• Title/Summary/Keyword: Fault Current Limiting Characteristics

Search Result 239, Processing Time 0.024 seconds

Characteristics according to the spot at the beginning of the fault current (개선된 자속구속형 전류제한기의 사고 시점에 따른 사고전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Lee, Dong-Hyeok;Han, Sang-Chul;Lee, Jeong-Phil;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.189-189
    • /
    • 2010
  • The Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In a normal condition, the flux generated from a primary coil is cancelled out by its structure and the zero resistance of the YBCO thin films. When a fault occurs, the resistance of the YBCO coated conductor was generated and the fault current was limited by the SFCL. In this paper, we investigated the fault current limiting characteristics through the spot at the beginning of the fault current in the Improved flux-lock type SFCL. The experiment results that the fault current limiting characteristics was difference according to the point of a fault current started. Through the analysis, it was shown that shorter the time of a phase transition.

  • PDF

Current Limiting Characteristics due to Application Location of a Superconducting Fault Current Limiter in a Simulated Power Distribution System (모의배전계통에 초전도한류기의 도입위치에 따른 전류제한 특성)

  • You, Il-Kyoung;Kim, Jin-Seok;Kim, Myoung-Hoo;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.90-95
    • /
    • 2009
  • The application of a large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer‘s impedance causes the short-circuit current of the power distribution system to increase and thus, the higher short-circuit current exceeds the cut-off ratings of the protective devices such as a circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from the higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. However, the current limiting effect of SFCL including its bus voltage drop compensation depends on SFCL's application location in a distributed power system. In this paper, the current limiting and the bus-voltage drop compensating characteristics of the SFCL applied into a power distribution system were studied. In addition, the quench and the recovery characteristics of the SFCLs in each location of the power distribution system were compared each other.

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type and Their Performance Comparison (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 성능평가에 관한 연구)

  • 홍원표;김용학
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.74-83
    • /
    • 2002
  • The maximun short circuit current of modern power system is becoming so large that circuit breaker is not expected to be able to shut down the current in the future In order cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for furture power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system. The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element (resistor or reactor). from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparision characteristics for two type SFCL. Desired design specification and operation parameters of SECL were also given qualitatively by the performance.

Analysis on Current Limiting and Recovery Characteristics of a SFCL using a Trigger of Superconducting Element (초전도소자의 트리거를 이용한 초전도 전류제한기의 전류제한 및 회복특성 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • As one of the countermeasures to improve the recovery characteristics of the SFCL (superconducting fault current limiter), the method using the trigger of high-TC superconducting element (HTSC) when the quench in the HTSC element occurred was proposed. To confirm the suggested method, the control circuit to detect the quench occurrence of HTSC element in case of the fault occurrence was designed and the current limiting and recovery experiments of the SFCL using the designed control circuit were performed. Through the analysis for the experimental results, the points of both the open time and the closing time of a power switch comprising the control circuit could be adjusted by the resistance amplitude of a normal conducting current limiting resistor (CLR) and the recovery characteristics of the SFCL together with the current limiting operation could be confirmed to be improved by using the control circuit.

Quench Characteristics of Flux-lock type Superconducting Fault Current Limiter using Open-loop Iron Core (개루프 철심을 이용한 자속구속형 초전도한류기의 퀜치특성)

  • Nam, Gueng-Hyun;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Lee, Na-Young;Lim, Sung-Hun;Park, Chung-Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.159-160
    • /
    • 2005
  • The superconducting fault current limiter(SFCLs) provides the effect such as enhancement in the power system reliability due to limiting fault current in a few miliseconds. The Flux-lock type SFCL using the YBCO film among various type SFCLs consists of the primary and the secondary copper coils that are wound in parallel each other through the iron core. The operation can be controlled by adjusting the inductances and the winging directions of each the coil. We compared the current limiting performance on the additive and the subtractive polarity winding directions in case of an open-loop iron core. To analyze quench characteristics, we experimented various phase angle.

  • PDF

Comparison of Fault Current Limiting Characteristics According to Facility in Power System (전력계통의 사고전류 저감 설비별 특성 비교)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.127-129
    • /
    • 2005
  • We investigated the fault current limiting characteristics according to the various facilities in power system. Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such as short circuits are increasing higher, which causes the ratings of circuit breakers(CBs) to increase. Upgrading or replacement of CBs is not difficult from the technical and economical point of view. Bus split is being adopted into a part of 154 kV power systems, but it has adverse effects such as overload to neighboring power systems, increased voltage fluctuation, and decreased power system stability. For 345 kV power systems, the bus split measure is not feasible and dc reactors are being suggested. The superconducting fault current limiter is a protection gear of new concept that limits fault current automatically in a few milliseconds. It can also provide the effect of CB capacity increase, relaxation of power machine criteria, enhancement in power system reliability, and flexible power system operation.

  • PDF

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

Characteristics of a FCL Applying Fast Interrupter According to the Current Limitation Elements (고속 인터럽터를 적용한 한류기의 전류제한요소에 따른 특성)

  • Im, In-Gyu;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1752-1757
    • /
    • 2012
  • With the development in industry, power demand has increased rapidly. As consumption of power has increased, Demand for new power line and electric capacity has risen. However, in the event of fault, problems occur in extending the range of fault coverage and increasing fault current. In these reasons, protection devise is recognized as the prevention of an accident and fault current. This paper dealt with minimizing fault propagation and limiting fault current by adjusting fault current limiter (FCL) with fast interrupter. At this point, we compared and analyzed characteristics between non-inductive resistance and fault current which is limited by superconducting units. In normal state of the power system, power was supplied to the load, but when fault occurred, the interrupter was operated as CT which detected the over-current. Its operation made the limitation of fault current through a FCL. We concluded that the limiter using superconducting units was more efficient with the increase of power voltage. Superconducting fault current limiter with the fast interrupter prevented the spread of a fault, and improved reliability of power system.

Operating characteristics of high Tc superconducting current limiting fuse at various voltages (고온 초전도 한류퓨즈의 전압별 동작특성)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Park, Kwon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.161-163
    • /
    • 2001
  • We present the basic properties of a superconducting current limiting fuse (SCLF) based on YBCO/Au films. The SCLFs consists of YBCO stripes covered with Au layers for current shunt. Under the source voltage of 100 $V_{rms}$, the longer the duration time of fault current was, the shorter its discharge time was. The duration time of fault current and its discharge time were reduced by increased voltages in the range of 200 - 300 $V_{rms}$. We thought that this was because the quench propagation was limited by local melting generated with higher voltage.

  • PDF

Analysis of Characteristics on the High-speed SFCL According to Single Line-ground-fault in the Reclosing Operation (재폐로 동작시 1선 지락사고에 따른 고속도 초전도 한류기의 특성 분석)

  • Jeong, In-Sung;Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.612-615
    • /
    • 2015
  • This paper proposed an high-speed superconducting fault current limiter (H-SFCL). The proposed H-SFCL functioned the initial fault current could be covered by the SFCL and the continued fault current after the one-cycle from fault occurrence could be controlled current-limiting-element of the normal conduction. To investigate the operation characteristics of the H-SFCL, a simulation power system was constructed, and a single line-to-ground fault was occurred. As a result, the H-SFCL limited the fault current by more than about 70%, and it was confirmed that the electric power burden was reduced compared to the SFCL that consisted only of superconductors.