• 제목/요약/키워드: Fault Current Limiting Characteristics

검색결과 239건 처리시간 0.02초

1선 지락 사고 시 3 권선 변압기에 적용된 초전도 한류기의 동작 특성 분석 (Analysis of Transient Characteristics of a SFCL Applied Into Third-winding Transformer in a Single Line-to-ground Fault)

  • 최혜원;최효상;정병익
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.1033-1037
    • /
    • 2013
  • Coercion transformer is commonly used in the electrical grid which in three phase of distribution system. The accident of the electrical grid is divided into a single, a double, a third line-to-ground faults and a double, a third line-to-line faults. A single line-to-ground fault accounts for nearly 75[%] among them. In this research, when a Superconducting Fault Current Limiters (SFCL) was applied to the three phase power system, operation in a single line-to-ground fault and limiting characteristics of fault current according to turns ratio of third winding were analyzed. When a single line-to-ground fault happened, secondary winding's circuit was open. Then third winding's circuit with a SFCL was closed. So fault current was limited by diverted circuit. At this time, we could find out that size of the limited fault current could be changed according to third winding rate. We confirmed that limiting operation of the fault current was carried out within one-period. These results will be utilized in adjusting the size of the SFCL.

분리된 삼상 자속구속형 전류제한기와 일체화된 삼상 자속구속형 전류제한기의 전류제한 특성 비교 (Comparison of Fault Current Limiting Characteristics between the separated Three-phase Flux-lock Type SFCL and the Integrated Three-phase Flux-lock Type SFCL)

  • 두승규;두호익;김민주;박충렬;김용진;이동혁;한병성
    • 한국전기전자재료학회논문지
    • /
    • 제22권8호
    • /
    • pp.689-693
    • /
    • 2009
  • We investigate the comparison of fault current characteristics between the separates three-phase flux-lock type superconducting fault current limiter(SFCL) and integrated three-phase flux-lock type superconducting fault current limiter(SFCL). The single-phase flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil on an iron core and superconducting elements are connected to secondary coil in series. Superconducting elements are used by the YBCO coated conductor. The separated three-phase flux-lock type SFCL consists of single-phase flux-phase type SFCL in each phase. But the integrated three-phase flux-lock type SFCL consists of three-phase flux-reactors wound on an iron core. Flux-reactor consists of the same turn's ratio between coil 1 and coil 2 for each single phase. To compare the current limiting characteristics of the separated three-phase flux-lock type SFCL and integrated three-phase flux-lock type SFCL, the short circuit experiments are carried out fault condition such as the single line-to-ground fault. The experimental result shows that fault current limiting characteristic of the separated three-phase flux-lock type SFCL was better than integrated three-phase flux-lock type SFCL. And the integrated three-phase flux-lock type SFCL has an effect on sound phase.

전력계통 고장전류 저감을 위한 한류기술 및 초전도 저항형 한류기 개발 동향 분석

  • 이방욱;강종성;박권배;오일성
    • 한국초전도저온공학회지:초전도와저온공학
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2003
  • For limitation and interruption of short circuit currents from low voltage to extra high voltage applications, the electrical equipment including fuses and circuit breakers, are widely used today. But in order to anticipate increasing needs for effective and competitive device for limiting the growing fault current in electrical power systems, fault current limitation technologies and fault current limitation devices are widely introduced and investigated in these days. Furthermore, the applications of high temperature superconducting materials (HTSC) into the current limiting devices are new approach for developing of novel and effective col-rent limitation electrical equipment. In this research, the necessities of current limitation technology and the developed and developing current limitation devices for power systems are introduced. Finally, the investigation of resistive type fault current limiters which is under development by LG and KEPCO were introduced.

  • PDF

매트릭스형 초전도 전류제한기의 리액터의 턴수 및 션트저항 증가에 따른 퀜치특성 분석 (Analysis of Quench Characteristics according to increment of turn number of a reactor and shunt resistors of the Matrix-type Superconductor Fault Current Limiter)

  • 이주형;오금곤;정수복;박형민;조용선;정병익;최효상
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.332-334
    • /
    • 2008
  • The matrix-type superconducting fault current limiter (SFCL) using YBCO thin film consists of the trigger and current-limiting parts. We fabricated the matrix-type SFCL with the integrated current limiting modules. we carried out the experiment of matrix-type SFCL with the integrated current limiting modules connected in series or parallel. We saw current characteristics due to ratio of change the shunt resistance and turns. We confirmed that the difference of critical current between superconducting units was decreased by increment of current flowing into the reactor which applied the magnetic field into the superconducting units..

  • PDF

The Analysis of Current Limiting Performance in a High-$T_c$ Superconductor using Flux-Lock Concepts

  • 임성훈;최효상;김영순;이성룡;한병성
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.229-234
    • /
    • 2002
  • In this paper, we analyzed the fault current performance in a $high-T_{c}$ superconductor(HTS) which was installed on flux-lock reactor with an external magnetic field coil covering the HTS. In this HTS fault current limiter using flux-lock concepts, the initial limiting current level can be controlled by adjusting the inductance of the coils. Furthermore, the current limiting characteristics of $high-T_{c}$ superconducting FCL can be improved by applying the external magnetic field into the $high-T_{c}$ superconductor. This paper discusses current limiting performance according to the inductance of the coil 1 in two cases with ac magnetic field coil or not and suggests the methods to improve the current limiting factor $P_{limit}$, which is defined as the ratio of the limited current $I_{FCL}$ at the current limiting phase to the prospective short -circuit current $I_{PSC}$.TEX> PSC/.

  • PDF

선간 단락사고에 대한 초전도 한류기의 동작특성에 대한 연구 (A study on operating properties of superconducting fault current limiter in the line-to-line fault)

  • 최효상;현옥배;김상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.86-88
    • /
    • 1999
  • We investigated the current limiting characteristics of resistive and inductive SFCLs with $100{\Omega}$ of quench impedance for a line-to-line fault in the 154 kV transmission system. The fault simulation at the phase angles $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ showed that the resistive SFCL limited the fault current less than 15 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 13 kA, but with $2{\sim}3\;kA$ of DC component which decreased to zero in 6 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

YBCO 박막을 이용한 배전급 저항형 초전도 한류기 (Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films)

  • 이방욱;박권배;강종성;김호민;오일성;심정욱;현옥배
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

이중철심을 이용한 병렬연결된 자기결합형 초전도한류기의 전류제한 및 회복특성 (Current Limiting and Recovery Characteristics of Two Magnetically Coupled Type SFCL with Two Coils Connected in Parallel Using Dual Iron Cores)

  • 고석철;임성훈
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.717-722
    • /
    • 2016
  • 본 논문은 고장발생 초기 고장전류의 크기에 따라 피크전류제한 기능을 갖도록 하나의 철심에 기존 1차 코일과 2차 코일이 병렬로 연결된 초전도 소자 1과 추가적인 철심을 사용하여 3차 권선에 초전도 소자 2가 연결된 자기결합형 초전도한류기를 제안하였다. 이중 철심을 이용하여 코일 1과 코일 2간 병렬로 연결한 자기결합형 초전도한류기가 고장발생시 피크전류를 초전도 소자 1만이 분담하는 것을 확인할 수 있었다. 그 이유는 초기 사고전류의 순간적인 요소가 커서 초전도 소자 1이 ?치되어 작동하였으나, 코일 3에 흐르는 전류가 임계전류를 초과하지 않았고, 이로 인해 초전도 소자 2가 ?치되어 작동하지 않았기 때문이다. 사고 시 피크전류를 순차적인 초전도 소자로 제한하기 위해서는 코일 1이 낮은 자기인덕턴스 값을 갖고 있으면서도 코일 2보다 코일 3이 보다 높은 자기인덕턴스 값을 갖도록 설계해야 할 것이다. 또한, 고장 발생 초기 사고전류의 크기를 결정하는 고장조건 중의 하나인 1차 코일과 2차 코일간의 권선비가 0.25일 때 두 SFCL의 전류제한 및 회복특성에 대한 검증을 선로단락실험을 통해 분석되었다. 이 단락실험의 분석결과, 가극결선인 경우가 감극결선한 경우보다도 전류제한 및 회복특성이 더욱 우수함을 확인할 수 있었다.

2차 권선의 연결방법에 따른 변압기형 초전도 한류기의 특성 (Characteristics of Transformer-Type SFCL according to the Connecting Methods of Secondary Coils)

  • 조용선;박형민;정수복;최효상
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2078-2083
    • /
    • 2007
  • We have analyzed operating characteristics of transformer-type superconducting fault current limiter (SFCL) according to the serial or parallel connections of secondary coils with $YBa_2Cu_3O_7$ (YBCO) thin films. The turn ratio between the primary and secondary coils was 63:21. Transformer-type SFCL using a transformer with secondary winding of serial or parallel coils could reduce the unbalanced quench caused by differences of the critical current density between YBCO thin films. We found that transformer-type SFCL having serial or parallel connections induced simultaneous quench between the superconducting units. The limiting current in the transformer-type SFCL with a parallel connection was lowered to 30 % compared to the SFCL with a serial connection. In the meantime, when the currents generated in the superconducting units were similar, the voltage value in the parallel connection was 60 % as low as that in the serial connection. However, the voltage generated in the primary winding was some higher. In conclusion, we found that transformer-type SFCL with parallel connection of secondary coils was more effective in fault current limiting characteristics and in the reduction of the consumption power for superconducting units compared to those of the transformer-type SFCL with serial connection of secondary coils.

DC 그리드 안정성 향상을 위해 변압기형 초전도 한류기가 적용된 직류 차단 기술에 관한 연구 (A Study on DC Interruption Technology using a Transformer Type Superconducting Fault Current Limiter to Improve DC Grid Stability)

  • 황선호;최혜원;정인성;최효상
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.595-599
    • /
    • 2018
  • Interruption system with the transformer type superconducting fault current limiter(TSFCL) is proposed in this paper. The interruption system with a TSFCL is a technology that it maximizes the interruption function of a mechanical DC circuit breaker using a transformer and a superconducting fault current limiter. By a TSFCL, the system limits the fault current till the breakable current range in the fault state. Therefore, the fault current could be cut off by a mechanical DC circuit breaker. The Interruption system with a TSFCL were designed using PSCAD/EMTDC. In addition, the Interruption system with a TSFCL was applied to the DC test circuit to analyze characteristics of a current-limiting and a interruption operation. The simulation results showed that the Interruption system with a TSFCL interrupted the fault current in a stable when a fault occurred. Also, The current-limiting rate of the Interruption system with a TSFCL was approximately 69.55%, and the interruption time was less than 8 ms.