• Title/Summary/Keyword: Fault Characteristics

Search Result 1,294, Processing Time 0.033 seconds

Unbalanced Characteristics of the Superconducting Fault Current Limiters with a Single Line-to-ground Fault (1선 지락사고에 대한 초전도한류기의 불평형 특성)

  • Choi, Hyo-Sang;Lee, Na-Young;Lee, Sang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.851-855
    • /
    • 2005
  • We investigated the unbalanced characteristics of the superconducting fault current limiters (SFCLs) based on YBCO thin films with a single line-to-ground fault. When a single line-to-ground fault occurred, the short circuit current of a fault phase increased about 6 times of transport currents after the fault onset but was effectively limited to the designed current level within 2 ms by the resistance development of the SFCL. The fault currents of the sound phases almost did not change because of their direct grounding system. The unbalanced rates of a fault phase were distributed from 6.4 to 1.4. It was found that the unbalanced rates of currents were noticeably improved within one cycle after the fault onset. We calculated the zero phase currents for a single line-to-ground fault using the balanced component analysis. The positive sequence resistance was reduced remarkably right after the fault onset but eventually approached the balanced positive resistance component prior to the system fault. This means that the system reaches almost the three-phase balanced state in about 60 ms after the fault onset at the three-phase system.

Interrupting characteristics of the transformer superconducting fault current limiter

  • Hwang, S.H.;Choi, H.W.;Jeong, I.S.;Choi, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.40-44
    • /
    • 2017
  • This paper analyzed the fault current limiting characteristics of the previously proposed transformer superconducting fault current limiter (TSFCL) interruption system according to its transformer type. The TSFCL interruption system is an interruption technology that combines a TSFCL, which uses a transformer and a superconductor, and a mechanical DC circuit breaker. This technology first limits the fault current using the inductance of the transformer winding and the quench characteristics of the superconductor. The limited fault current is then interrupted by a mechanical DC circuit breaker. The magnitude of the limited fault current can be controlled by the quench resistance of the superconductor in the TSFCL and the turns ratio of the transformer. When the fault current is controlled using a superconductor, additional costs are incurred due to the cooling vessel and the length of the superconductor. When the fault current is controlled using step-up and step-down transformers, however, it is possible to control the fault current more economically than using the superconductor. The TSFCL interruption system was designed using PSCAD/EMTDC-based analysis software, and the fault current limiting characteristics according to the type of the transformer were analyzed. The turns ratios of the step-up and step-down transformers were set to 1:2 and 2:1. The results were compared with those of a transformer with a 1:1 turns ratio.

Current Limiting Characteristics of flux-lock Type High-lc Superconducting Fault Current Limiter According to fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Choi, Hyo-Sang;Cho, Yong-Sun;Lim, Sung-Hun;Park, Chung-Ryul;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.747-753
    • /
    • 2005
  • We Investigated the current limiting characteristics of the flux-lock type superconducting fault current limiter(SFCL) by fault angles. The flux-lock type SFCL consists of the primary and the secondary copper coils wound in parallel through the iron core and YBCO thin film. In this paper, the current limiting characteristics of the flux-lock type SFCL by fault angles in case of the subtractive and the additive polarity windings were compared and analyzed. The flux-lock type SFCL limited fault current more quickly as the fault angles increased. On the other hand, the initial power burden of the superconducting element during the fault increased as the fault angles increased. In addition, we found that the resistance of the flux-lock type SFCL in case of the subtractive polarity winding was more increased than that of the additive polarity winding. The peak current of the fault current in case of the subtractive polarity winding was larger than that of the additive polarity winding.

Current Limiting Characteristics of a SFCL with Two Triggered Current Limiting Levels in a Simulated Power Distribution System (모의배전계통에 두 트리거 전류레벨을 이용한 초전도한류기의 전류제한 특성 분석)

  • Ko, Seok-Cheol;Han, Tae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.134-139
    • /
    • 2013
  • When the accident occurred in power distribution system, it needs to control efficiently the fault current according to the fault angle and location. The flux-lock type superconducting fault current limiters (SFCL) can quickly limit when the short circuit accidents occurred and be made the resistance after the fault current. The flux-lock type SFCL has a single triggering element, detects and limits the fault current at the same time regardless of the size of the fault current. However, it has a disadvantage that broken the superconductor element. If the flux-lock type SFCL has separated structure of the triggering element and the limiting element, when large fault current occurs, it can reduce the burden of power and control fault current to adjust impedance. In this paper, this system is composed by triggering element and limiting element to analyze operation of limiting current. When the fault current occurs, we analyzed the limiting and operating current characteristics of the two triggering current level, and the compensation characteristics of bus-voltage sag according to the fault angle and location.

A Study of Fault Site at Byeonggok-myeon, Yeongdeok-gun, South Korea (영덕군 병곡면의 단층 노두 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • In the southeastern part of the Korean Peninsula, the Yangsan Fault, an active fault zone, has developed. Many earthquakes occur around these faults, and the possibility of earthquakes occurring along the branch faults is being discussed. On the other hand, the Yeongdeok Fault is reported in Yeongdeok-gun, which is the northern part of the Yangsan fault. In this study, goemorphic characteristics of a set faults found on the outcrop of the gentle slope of the coast of Byeonggok-myeon were analyzed and granulometric and geochemical characteristics of sediments and other materials, including fault gouges were analyzed. The outcrop of Byeonggok-myeon is the part of the fault core and can be divided into two parts. Theses fault are formed on the upper part of the Mesozoic bedrock and the tertiary sedimentary layer of red sand-supported clasts are covered in several sedimentary units. The faults were normal fault sets, and a number of vertical cracks were developed, and glossy surfaces were observed in the fault area. It appears that these faults have occurred after alluvial deposition had been formed. In the case of samples from fault gouges, there were differences in particle size and geochemical characteristics from the surrounding area.

Geomorphological Development and Fault Activity of the Central-Southern Yangsan Fault (I): Developmental Characteristics and Distribution of the Quaternary Landforms (양산단층 중남부 구간의 지형 발달과 단층 운동 (I): 제4기 지형의 발달 특성 및 분포)

  • Hong, Yeong-Min;Oh, Jeong-Sik;Hong, Seong-Chan;Shin, Jae-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Geomorphological development and distribution at the macro scale provide a clue to the geotectonic characteristics that have affected the geomorphological system. This is because the developmental characteristics and distribution of the landform at the macro scale remain spatial characteristics due to tectonic processes, such as fault activity. From the perspective of tectonic geomorphology, this study identified the developmental characteristics and distribution of the Quaternary landforms in central-southern Yangsan fault and discussed its relevance to fault activity. In this paper, we presented examples and results of morphotectonic analysis of the Yangsan fault, and will present the results of age dating, stratigraphic relationship of the Quaternary landforms, and calculation of cumulative slip rate in the next paper.

The Analysis of Protection -Characteristics and Fault-Locator Simulation on the Electrical Railway (교류전기철도 보호특성 해석 및 고장점표정 시뮬레이션)

  • 창상훈;이장무
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.262-269
    • /
    • 1998
  • In case the fault occurs in AC power supply network, protective relaying system must selectively detect line-to-line/ground fault and immediately cut off the power flow into the fault location for guaranteeing the safety of people, electric vehicle and ground installation etc. It is the most important point in power system operation to minimize the fault duration by rapid trip scheme and accurate estimation of the fault location. In this paper, we analyze the load characteristics of each vehicle, perform the fault analysis of AC power supply network using AT current-ratio method. The result shows its usefulness.

  • PDF

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Analysis on Reduction Method of Symmetrical Fault Current in a Power System with a SFCL applied into Neutral Line (전력계통의 중성선에 적용된 초전도한류기의 대칭고장전류 저감방안 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.2
    • /
    • pp.148-152
    • /
    • 2010
  • The superconducting fault current limiter (SFCL) applied into the neural line of a power system, which can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault, was reported to be the effective application location of the SFCL in a power system. However, the limiting operation for the symmetrical fault current like the triple line-ground fault is not effective because of properties of the balanced three-phase system. In this paper, the limiting method of the symmetrical fault current in a power system with a SFCL applied into neutral line was suggested. Through the short-circuit experiments of the three-phase fault types for the suggested method, the fault current limiting and recovery characteristics of the SFCL in the neutral line were analyzed and the effectiveness of the suggested method was described.

Analysis of Fault Current Limiting Characteristics According to Variation of Fault Current level in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (사고전류 변화에 따른 일체화된 삼상자속구속형 고온초전도 사고전류제한기의 사고전류 제한 특성 분석)

  • Han, Byoung-Sung;Park, Chung-Ryul;Du, Ho-Ik;Choi, Hyo-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.39-40
    • /
    • 2007
  • The analysis of fault current limiting characteristics according to variation of fault current level in the integrated three-phase flux-lock type superconducting fault current limiter (SFCL), which consisted of three-phase flux-lock reactor wound on an iron core with the same turn's ratio between coil 1 and coil 2 for each single phase, was performed. To analyze the current limiting characteristics of this integrated three-phase flux-lock type SFCL, the short circuit experiments was carried out the various three-phase faults such as the single line-to-ground fault, the double line-to-ground fault, the triple line-to-ground fault. From the experimental results, the fault current limiting characteristic was improved according to increase of fault current level.

  • PDF