• Title/Summary/Keyword: Fault Characteristics

Search Result 1,294, Processing Time 0.038 seconds

Performance of Full Duplex Switched Ethenlet Systems with a Dual Traffic Regulator for Avionic Data Buses (이중 트래픽 조절기능이 있는 항공데이터버스용 전이중 이더넷 교환시스템의 성능 분석)

  • Kim, Seung-Hwan;Yoon, Chong-Ho;Park, Pu-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.89-96
    • /
    • 2009
  • As increasing the number of digital control devices installed on aircrafts and their transmission speed, various digital data buses have been introduced to provide reliable and high-speed characteristics. These characteristics of avionics data bus are highly related on the fault-tolerant performance which can make minimize jitter and loss during data transfer. In this paper, we concerned about a new traffic shaping scheme for increasing the reliability of Avionics Full Duplex Switched Ethernet (AFDX) systems based on ARINC 664 standard. We note that the conventional AFDX with a single regulator per virtual link system may produce aggregated traffics as the number of virtual links increasing. The aggregated traffic results in large jitters among frames. To remedy for the jitter and loss of data, we propose a dual regulator scheme for the AFDX system. The purpose of the additional regulator is to additionally regulate aggregated traffics from a number of per virtual link regulators. Using NS-2 simulator, we show that the proposed scheme provides a better performance than the single regulator one. It is worthwhile note that the proposed AFDX with Dual Regulator scheme can be employed to not only aircraft networks but other QoS sensitive networks for robot and industrial control systems.

Detailed Processing and Analysis on the Single-channel Seismic Data for Site Survey of Daecheon-Wonsando Subsea Tunnel (대천-원산도 해저터널 부지조사를 위한 단일채널 탄성파자료의 정밀 처리 및 분석)

  • Kim, Won-Sik;Park, Keun-Pil;Kim, Hyun-Do;Cheong, Snons;Koo, Nam-Hyung;Lee, Ho-Young;Park, Eui-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.336-348
    • /
    • 2010
  • The Single-channel seismic survey with the source of bubble pulser and drilling survey was carried out in 2008 and 2009 for the site survey of Daecheon-Wonsando area, which was a proposed area of Korea-China subsea tunnel. The goal of this study is to analyze the depth and characteristics of acoustic basement for the stability assessment and tunnel design in this proposed area through combining drilling data with this single-channel seismic data after detailed processing. For this purpose, among the data processing schemes which are usually applied to multi-channel seismic data, we applied the F-K filtering to eliminate the AC(alternating current) noise and the post-stack depth migration to produce depth section. As a result, we verified that the improved depth section could be obtained from single-channel seismic data, and the distribution and characteristics of basement could be analyzed in survey area through the combined analysis with drilling data. However, we could not interpret the detailed structures, fault and fracture zone, due to the quality of bubble pulser source and single-channel data. We expect that those detailed structures can be analyzed when higher resolution seismic data is provided. Therefore, we recommend some items for future seismic survey of subsea tunnel to obtain the high resolution seismic data.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.

A Study on Analysis of Defect Types and Measures for Reduction of Tile Construction for Apartment Houses (공동주택 타일공사의 하자 유형 분석 및 저감 대책에 관한 연구)

  • Park, Hyun Jung;Eom, Yong Been;Jeong, U Jin;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.701-712
    • /
    • 2021
  • As the domestic housing supply problem has been resolved, the apartment construction market has shifted to a consumer-oriented market that wants high quality, and in particular, expectations in the area of finishing quality have increased. Looking at the status of complaints regarding apartment housing defects supplied by Korea Land and Housing Corporation, tile-related complaints are the type occurring the most frequently. While the Ministry of Land, Infrastructure and Transport(MOLIT) is making an ongoing effort to reduce complaints related to defects, through approaches such as drafting amendments to 「Investigation of defects in apartment houses, calculation of repair costs, and standards for determining defects」, the provision of preventive measures has been insufficient. In addition, by reviewing studies, there has been insufficient research to construct a classification system after deriving the characteristics of each type using the qualitative knowledge of experts, various quantitative indicators, and suggesting measures for reduction according to the causes of each type. Therefore, this study will reflect qualitative indicators to use the AHP analysis that makes it easy to identify the relationship between defects by surveying construction experts. Then, by visualizing the weight of 'Possibility of recurrence after repair,' 'Degree of difficulty in repairing defects' and 'Fault frequency' using a radial graph, we will analyze the characteristics of each type of tile construction defect and establish measures for reduction according to the cause. This will improve the quality of the living environment and contribute to the establishment of a system for smooth defect management and reduction of defects in apartment tile construction.

An Intelligence Support System Research on KTX Rolling Stock Failure Using Case-based Reasoning and Text Mining (사례기반추론과 텍스트마이닝 기법을 활용한 KTX 차량고장 지능형 조치지원시스템 연구)

  • Lee, Hyung Il;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.47-73
    • /
    • 2020
  • KTX rolling stocks are a system consisting of several machines, electrical devices, and components. The maintenance of the rolling stocks requires considerable expertise and experience of maintenance workers. In the event of a rolling stock failure, the knowledge and experience of the maintainer will result in a difference in the quality of the time and work to solve the problem. So, the resulting availability of the vehicle will vary. Although problem solving is generally based on fault manuals, experienced and skilled professionals can quickly diagnose and take actions by applying personal know-how. Since this knowledge exists in a tacit form, it is difficult to pass it on completely to a successor, and there have been studies that have developed a case-based rolling stock expert system to turn it into a data-driven one. Nonetheless, research on the most commonly used KTX rolling stock on the main-line or the development of a system that extracts text meanings and searches for similar cases is still lacking. Therefore, this study proposes an intelligence supporting system that provides an action guide for emerging failures by using the know-how of these rolling stocks maintenance experts as an example of problem solving. For this purpose, the case base was constructed by collecting the rolling stocks failure data generated from 2015 to 2017, and the integrated dictionary was constructed separately through the case base to include the essential terminology and failure codes in consideration of the specialty of the railway rolling stock sector. Based on a deployed case base, a new failure was retrieved from past cases and the top three most similar failure cases were extracted to propose the actual actions of these cases as a diagnostic guide. In this study, various dimensionality reduction measures were applied to calculate similarity by taking into account the meaningful relationship of failure details in order to compensate for the limitations of the method of searching cases by keyword matching in rolling stock failure expert system studies using case-based reasoning in the precedent case-based expert system studies, and their usefulness was verified through experiments. Among the various dimensionality reduction techniques, similar cases were retrieved by applying three algorithms: Non-negative Matrix Factorization(NMF), Latent Semantic Analysis(LSA), and Doc2Vec to extract the characteristics of the failure and measure the cosine distance between the vectors. The precision, recall, and F-measure methods were used to assess the performance of the proposed actions. To compare the performance of dimensionality reduction techniques, the analysis of variance confirmed that the performance differences of the five algorithms were statistically significant, with a comparison between the algorithm that randomly extracts failure cases with identical failure codes and the algorithm that applies cosine similarity directly based on words. In addition, optimal techniques were derived for practical application by verifying differences in performance depending on the number of dimensions for dimensionality reduction. The analysis showed that the performance of the cosine similarity was higher than that of the dimension using Non-negative Matrix Factorization(NMF) and Latent Semantic Analysis(LSA) and the performance of algorithm using Doc2Vec was the highest. Furthermore, in terms of dimensionality reduction techniques, the larger the number of dimensions at the appropriate level, the better the performance was found. Through this study, we confirmed the usefulness of effective methods of extracting characteristics of data and converting unstructured data when applying case-based reasoning based on which most of the attributes are texted in the special field of KTX rolling stock. Text mining is a trend where studies are being conducted for use in many areas, but studies using such text data are still lacking in an environment where there are a number of specialized terms and limited access to data, such as the one we want to use in this study. In this regard, it is significant that the study first presented an intelligent diagnostic system that suggested action by searching for a case by applying text mining techniques to extract the characteristics of the failure to complement keyword-based case searches. It is expected that this will provide implications as basic study for developing diagnostic systems that can be used immediately on the site.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Tectonic Movement in the Korean Peninsula (II): A Geomorphological Interpretation of the Spatial Distribution of Earthquakes (한반도의 지반운동 (II): 한반도 지진분포의 지형학적 해석)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.488-505
    • /
    • 2007
  • The purposes of this research are twofold; 1) to verify spatial differences of tectonic movement using the spatial distribution of earthquakes, and 2) to infer mechanisms that generate spatial accumulation patterns of earthquakes in the Korean Peninsula. The first part of this sequential paper (Park, 2007) argues that the Korean Peninsula consists of four geostructural regions in which tectonic deformation and consequent geomorphological development patterns are different from each other Since this conclusion has been made by terrain analyses alone, it is necessary to verify this suggestion using other independent geophysical data. Because earthquakes are results of movement and deformation of land masses moving in different directions, the distribution of earthquake epicenters may be used to identify the direction and rates of land mass movement. This paper first analysed the spatial distribution of earthquakes using spatial statistics, and then results were compared with the spatial arrangement of geostructural regions. The spatial distribution of earthquakes in the Korean Peninsula can be summarized as the followings; firstly, the intensity of earthquakes shows only weak spatial dependency, and shows large difference even at adjacent regions. Secondly, the epicenter distribution has a clear spatial accumulation pattern, even though the intensity of earthquake shows a random pattern. Thirdly, the high density area of earthquakes shows a clear 'L' shape, passing through Pyeongannam-do, centered at Pyeongyang, and Hwanghae-do, Seosan and Pohang. The correlation coefficient between the density of earthquakes and distance from geostructral region boundaries is much higher than those between the density of fault lines and distance from tectonic division boundaries. Since fault lines and tectonic divisions in the Korean Peninsula are the results of long-term geological development, there is an apparent scale discrepancy to find significant correlations with earthquakes. This result verifies the research hypothesis that the Korean Peninsula is divided into four geostructral regions in which each has its own moving direction and spatial deformation characteristics. The existence of geostructural regions is also supported by the movement parrerns of land masses estimated from the GPS measurements. This conclusion is expected to provide a new perspective to understand the geomorphological developments and the earthquake occurrences in the Korean Peninsula.

Rock Mechanics Modeling of the Site for the 2nd Step Construction of the KAERI Underground Research Tunnel (KURT) (KURT 2단계 건설부지에 대한 암석역학모델 설정)

  • Jang, Hyun-Sic;Ko, Chi-Hye;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.247-260
    • /
    • 2014
  • Rock masses at the site for the $2^{nd}$ step construction of the KAERI Underground Research Tunnel (KURT) are divided into six units to establish a rock mechanics model that is dependent on the geological characteristics and degree of joint development. The site primarily consists of three granitic units (G1, G2, and G3), two dykes (D1 and D3), and a fault zone of poor rock mass quality (F3). The F3 unit crosses the tunnel at the beginning of the site of $2^{nd}$ step construction. The rock masses of each unit are classified by RMR (Rock Mass Rating), Q-system, and RMi (Rock Mass Index), all based on borehole logging data. The deformation modulus, rock mass strength, cohesion, and friction angle for each unit are calculated using established empirical relationships. The representative rock mass classification and geotechnical parameters for the rock mass units are established, and a rock mechanics model for the site is proposed, which will be useful in the design and stability analysis of the $2^{nd}$ step construction of KURT.

Geology and Ore Deposits in the Haman-Kunbuk Copper District (함안군북지구(咸安郡北地區)의 지질(地質)과 동광상(銅鑛床))

  • Moon, Chung Uk;Kim, Myung Whan;Lee, Ji Hern;Choi, Chung Jung
    • Economic and Environmental Geology
    • /
    • v.3 no.2
    • /
    • pp.55-73
    • /
    • 1970
  • The district investigated covers the central and southern portions of the Uiryong Quadrangle amounting to $40km^2$ in area and is bounded approximately by geographical coordinates of $128^{\circ}$ 28' $40^{{\prime}{\prime}}{\sim}128^{\circ}$ 24' 25"E in longitude and $35^{\circ}10{\prime}{\sim}35^{\circ}14^{\prime}06^{{\prime}{\prime}}N$ in latitude. The purpose of this investigation was to provide basic information in drawing up a comprehensive development plan of the copper ore deposits known to exist in the HamanKumbuk district with special emphasis given to the ascertainment of geological and paragenetic characteristics. The area consists chiefly of shale, sandy shale and chert, all belong to Kyongsang System of Cretaceous age. Intruded into these rocks are andesite, granodiorite, basic dikes, and acidic dikes. The mineralization which took place in the area, consists of mostly fissure-filling vein deposits, numbering several tens, with varying magnitudes. The fissures and shear zones created in rocks, such as chert and granodiorite, hosted the deposition of mineralizing vapors and/or hydrothermal solutions along their openings. The strike lengths of these veins vary from 50 to 600 meters in extension and 0.1 to 3 meters in width. Although the degree of fluctuation in width is great, it averages 0.3m. The stuctural patterns, which apparently affected the deposition of veins, are fissure patterns, trend NS to $N30^{\circ}W$, and steep-pitching tension fractures as well as normal fault pattern. Ore minerals associated with vein matters are primarily chalcopyrite and small amounts of scheelite, cobaltiferous arsenopyrite, and gold and silver intimately associated with sulphide minerals. Associated with these ore mineral are pyrite, pyrrhotite, magnetite, specularite and arsenopyrite. Gangue minerals noted are quartz, calcite, chlorite, tourmaline and hornblende. In terms of the compositions of associated minerals, the vein deposits in the district could be grouped under the following four categories: 1. Pyrrhoitite, Arsenopyrite, Gold and Silver Bearing Copper Vein (Type I) 2. Calcite-Scheelite-Copper Vein (Type II) 3. Magnetite-Pyrite-Copper Vein (Type III) 4. Tourmaline Copper Vein (Type IV) Of the four types, the first and the fourth are presently yielding relatively higher grades: of copper ores and concentrates. The estimated ore reserves total some 222,000 metric tons with the following breakdown in terms of metal contents: Name of Mines Au(g/t) Ag(g/t) Cu(%) Reserves(M/T) Kunbuk 15.92 78.69 6,074 60.498 Cheil Kunbuk - - 1.040 60,847 Haman - - 2.688 101,204 222,549 As rehabilitation of old workings and/or exploration of veins at depth proceed, additional estimation of ore reserves may become apparent and necessary. With regard to the problem of beneficiation and upgrading of low-grade ores in the district, it would be advisable to make decisions on location, treating capacity and mill flowsheet after sufficient amount of exploration is completed as suggested in the report.

  • PDF

The Prediction of Ground Condition ahead of the Tunnel Face using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 터널막장 전방 지반 상태의 예측)

  • You Kwang-Ho;Song Han-Chan;Kim Ki-Sun;Lee Dae-Hyuck;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.440-449
    • /
    • 2004
  • Rock mass includes natural discontinuities such as joints and faults during its formation. Discontinuities are also referred as planes of weakness because of their weak mechanical characteristics. In the design of underground structures, it is necessary to consider the properties of discontinuities to insure the stability. During the excavation of a tunnel, these discontinuities have to be identified as early as possible so that proper change in excavation method or support design can be made accordingly. The excavation of the tunnel in a stable rock mass causes a 3-dimensional arching effect around the excavation face. It was revealed by previous studies that the existence of a weak zone or a fault zone ahead of tunnel foe induces a typical displacement tendency of convergence. For better understanding of the meaning of influence/trend lines of various displacement components, three-dimensional numerical analyses were conducted while varying deformation moduli, thicknesses and orientations of discontinuities. Numerical results showed that the changes in influence/trend lines of various displacement components were very similar to those by measurements. The discrepancies from the expected values were dependent on the physical properties, thicknesses and orientations of discontinuities.