• 제목/요약/키워드: Fault/Failure Detection

검색결과 208건 처리시간 0.025초

Detection Filter를 적용한 two-motor구동방식 전기자동차의 고장감지에 관한 연구 (Application of the fault detection filter to detect the dynamic faults of a two-motor driven electric vehicle system)

  • 김병기;장태규;박정우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.341-344
    • /
    • 1997
  • This paper presents a dynamics failure detection algorithm developed for the two-motor-driven electric vehicle system. The algorithm is based on the application of the fault detection filter. The fault detection includes the identification of sudden pressure drops of the two rear tires in driving axis and dynamics faults of the two inverter-motor-paired actuators An E.V. dynamics simulator is developed, which includes the modeling of the E.V. dynamics as well as the driving dynamics. The simulator, which allows the generation of various fault situations, is utilized in the verification of the developed fault detection algorithm. The results of the simulations are also presented.

  • PDF

Fault Coverage 요구사항 최적할당을 위한 모델링에 관한 연구 (A Study on Modeling for Optimized Allocation of Fault Coverage)

  • 황종규;정의진;이종우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.330-335
    • /
    • 2000
  • Faults detection and containment requirements are typically allocated from a top-level specification as a percentage of total faults detection and containment, weighted by failure rate. This faults detection and containments are called as a fault coverage. The fault coverage requirements are typically allocated identically to all units in the system, without regard to complexity, cost of implementation or failure rate for each units. In this paper a simple methodology and mathematical model to support the allocation of system fault coverage rates to lower-level units by considering the inherent differences in reliability is presented. The models are formed as a form of constrained optimization. The objectives and constraints are modeled as a linear form and this problems are solved by linear programming. It is identified by simulation that the proposed solving methods for these problems are effective to such requirement allocating.

  • PDF

그리드 컴퓨팅에서 서비스 품질을 위한 결함 포용 서비스의 구현 (The Implementation of Fault Tolerance Service for QoS in Grid Computing)

  • 이화민
    • 컴퓨터교육학회논문지
    • /
    • 제11권3호
    • /
    • pp.81-89
    • /
    • 2008
  • 광범위 분산 컴퓨팅 시스템인 그리드 컴퓨팅에서는 자원 결함의 발생 정도가 기존의 병렬 컴퓨팅보다 더 높다. 그리드 컴퓨팅에서 자원들의 결함은 작업 수행에 있어서 치명적인 영향을 줄 수 있기 때문에 결함 포용 기능은 필수적인 요소이다. 그리고 그리드 서비스들은 바람직한 작업의 수행을 위해 그리드 자원들의 최소한의 서비스 품질을 요구한다. 하지만 그리드 컴퓨팅 서비스를 제공하는 대표적인 미들웨어인 글로버스(Globus)는 결함 탐지 서비스와 관리 서비스 그리고 QoS 요구사항을 만족하는 결함 포용 서비스를 제공하지 않는다. 이에 본 논문에서는 그리드 컴퓨팅에서 QoS 요구사항을 만족하는 결합 포용 서비스를 제안한다. 이를 위해 본 논문에서는 프로세스 결함, 프로세서 결함, 네트워크 결함과 같이 결함의 정의를 확장한다. 그리고 자원 스케줄링 서비스, 결함 탐지 서비스, 결함 관리 서비스를 제안하고 구현 및 실험 결과를 제시한다.

  • PDF

Two-Faults Detection and Isolation Using Extended Parity Space Approach

  • Lee, Won-Hee;Kim, Kwang-Hoon;Park, Chan-Gook;Lee, Jang-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.411-419
    • /
    • 2012
  • This paper proposes a new FDI(Fault Detection and Isolation) method, which is called EPSA(Extended Parity Space Approach). This method is particularly suitable for fault detection and isolation of the system with one faulty sensor or two faulty sensors. In the system with two faulty sensors, the fault detection and isolation probability may be decreased when two faults are occurred between the sensors related to the large fault direction angle. Nonetheless, the previously suggested FDI methods to treat the two-faults problem do not consider the effect of the large fault direction angle. In order to solve this problem, this paper analyzes the effect of the large fault direction angle and proposes how to increase the fault detection and isolation probability. For the increase the detection probability, this paper additionally considers the fault type that is not detected because of the cancellation of the fault biases by the large fault direction angle. Also for the increase the isolation probability, this paper suggests the additional isolation procedure in case of two-faults. EPSA helps that the user can know the exact fault situation. The proposed FDI method is verified through Monte Carlo simulation.

불확실성의 존재에서 관절 고장을 가지는 로봇 시스템에 대한 강인한 내고장 제어 (Robust Fault-Tolerant Control for a Robot System Anticipating Joint Failures in the Presence of Uncertainties)

  • 신진호
    • 제어로봇시스템학회논문지
    • /
    • 제9권10호
    • /
    • pp.755-767
    • /
    • 2003
  • This paper proposes a robust fault-tolerant control framework for robot manipulators to maintain the required performance and achieve task completion in the presence of both partial joint failures and complete joint failures and uncertainties. In the case of a complete joint failure or free-swinging joint failure causing the complete loss of torque on a joint, a fully-actuated robot manipulator can be viewed as an underactuated robot manipulator. To detect and identify a complete actuator failure, an on-line fault detection operation is also presented. The proposed fault-tolerant control system contains a robust adaptive controller overcoming partial joint failures based on robust adaptive control methodology, an on-line fault detector detecting and identifying complete joint failures, and a robust adaptive controller overcoming partial and complete joint failures, and so eventually it can face and overcome joint failures and uncertainties. Numerical simulations are conducted to validate the proposed robust fault-tolerant control scheme.

흡수식 냉동시스템의 고장현상 분석과 진단 (Fault Symptom Analysis and Diagnosis for a Single-Effect Absorption Chiller)

  • 한동원;장영수;김용찬
    • 설비공학논문집
    • /
    • 제27권11호
    • /
    • pp.587-595
    • /
    • 2015
  • In this study, fault symptoms were simulated and analyzed for a single-effect absorption chiller. The fault patterns of fault detection parameters were tabulated using the fault symptom simulation results. Fault detection and diagnosis by a process history-based method were performed for the in-situ experiment of a single-effect absorption chiller. Simulated fault modes for the in-situ experimental study are the decreases in cooling water and chilled water mass flow rates. Five no-fault reference models for fault detection of a single-effect absorption chiller were developed using fault-free steady-state data. A sensitivity analysis of fault detection using the normalized distance method was carried out with respect to fault progress. When mass flow rates of the cooling and chilled water decrease by more than 19.3% and 17.8%, respectively, the fault can be detected using the normalized distance method, and COP reductions are 6.8% and 4.7%, respectively, compared with normal operation performance. The pattern recognition method for fault diagnosis of a single-effect absorption chiller was found to indicate each failure mode accurately.

Real-time Fault Detection Method for an AGPS/INS Integration System

  • Oh, Sang-Heon;Yoon, Young-Seok;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.974-977
    • /
    • 2003
  • The GPS/INS integration system navigation can provide improved navigation performance and has been widely used as a main navigation system for military and commercial vehicles. When two navigation systems are tightly coupled and the structure is complicated, a fault in either the GPS or the INS can lead to a disastrous failure of the whole integration system. This paper proposes a real-time fault detection method for an AGPS/INS integration system. The proposed fault detection method comprises a BIT and a fault detection algorithm based on chi-square test. It is implemented by real-time software modules to apply the AGPS/INS integration system and van test is carried out to evaluate its performance.

  • PDF

Induction Machine Fault Detection Using Generalized Feed Forward Neural Network

  • Ghate, V.N.;Dudul, S.V.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.389-395
    • /
    • 2009
  • Industrial motors are subject to incipient faults which, if undetected, can lead to motor failure. The necessity of incipient fault detection can be justified by safety and economical reasons. The technology of artificial neural networks has been successfully used to solve the motor incipient fault detection problem. This paper develops inexpensive, reliable, and noninvasive NN based incipient fault detection scheme for small and medium sized induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature space to achieve the desired classification. GFFD NN model is designed and verified for optimal performance in fault identification on experimental data set of custom designed 2 HP, three phase 50 Hz induction motor.

실시간 분산 시스템에서 heartbeat 시그널을 이용한 장애 검출 (Fault detection using heartbeat signal in the real-time distributed systems)

  • 문원식
    • 디지털산업정보학회논문지
    • /
    • 제14권3호
    • /
    • pp.39-44
    • /
    • 2018
  • Communication in real-time distributed system should have high reliability. To develop group communication Protocol with high reliability, potential fault should be known and when fault occurs, it should be detected and a necessary action should be taken. Existing detection method by Ack and Time-out is not proper for real time system due to load to Ack which is not received. Therefore, group communication messages from real-time distributed processing systems should be communicated to all receiving processors or ignored by the message itself. This paper can make be sure of transmission of reliable message and deadline by suggesting and experimenting fault detection technique applicable in the real time distributed system based on ring, and analyzing its results. The experiment showed that the shorter the cycle of the heartbeat signal, the shorter the time to propagate the fault detection, which is the time for other nodes to detect the failure of the node.

음향 데이터를 이용한 CNN 추론 윈도우 기반 산업용 직교 좌표 로봇의 고장 진단 기법 (Failure Detection Method of Industrial Cartesian Coordinate Robots Based on a CNN Inference Window Using Ambient Sound)

  • 조현태
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.57-64
    • /
    • 2024
  • In the industrial field, robots are used to increase productivity by replacing labors with dangerous, difficult, and hard tasks. However, failures of individual industrial robots in the entire production process may cause product defects or malfunctions, and may cause dangerous disasters in the case of manufacturing parts used in automobiles and aircrafts. Although requirements for early diagnosis of industrial robot failures are steadily increasing, there are many limitations in early detection. This paper introduces methods for diagnosing robot failures using sound-based data and deep learning. This paper also analyzes, compares, and evaluates the performance of failure diagnosis using various deep learning technologies. Furthermore, in order to improve the performance of the fault diagnosis system using deep learning technology, we propose a method to increase the accuracy of fault diagnosis based on an inference window. When adopting the inference window of deep learning, the accuracy of the failure diagnosis was increased up to 94%.