• 제목/요약/키워드: Fatty acid synthase

검색결과 238건 처리시간 0.023초

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

강황 추출물의 비알코올성 지방간 질환 개선 효과 (Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract)

  • 이영섭;이대영;권동렬;강옥화
    • 한국약용작물학회지
    • /
    • 제28권4호
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler velvet and immune promoting effects

  • Yoo, Jiseon;Lee, Juyeon;Zhang, Ming;Mun, Daye;Kang, Minkyoung;Yun, Bohyun;Kim, Yong-An;Kim, Sooah;Oh, Sangnam
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.166-182
    • /
    • 2022
  • Deer antler velvet is widely used in traditional medicine for its anti-aging, antioxidant, and immunity-enhancing effects. However, few studies have reported on the discovery of probiotic strains for deer antler fermentation to increase functional ingredient absorption. This study evaluated the ability of probiotic lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g., sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler velvet. Seventeen strains of Lactobacillus spp. that were isolated from kimchi and infant feces, including L. sakei, L. rhamnosus, L. brevis, and L. plantarum, and those that improved the life span of Caenorhabditis elegans were selected for evaluation. Of the 17 strains, 2 (L. rhamnosus LFR20-004 and L. sakei LFR20-007) were selected based on data showing that these strains increased both the sialic acid and GABA contents of deer antler extract after fermentation for 2 d and significantly improved the life span of C. elegans. Co-fermentation with both strains further increased the concentrations of sialic acid, GABA, and metabolites such as short-chain fatty acids and amino acids. We evaluated the biological effects of the fermented antler velvet (FAV) on the antibacterial immune response in C. elegans by assessing worm survival after pathogen infection. The survival of the C. elegans conditioned with FAV for 24h was significantly higher compared with that of the control worm group fed only normal feed (non-pathogenic E. coli OP50) exposed to E. coli O157:H7, Salmonella typhi, and Listeria monocytogenes. To evaluate the protective effects of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent was treated to in vitro and in vivo. We found that FAV significantly restored viability of mice splenocytes and immune promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor [TNF]-α) were activated compared to non-fermented deer antlers. This finding indicated the protective effect of FAV against Cy-induced cell death and immunosuppressed mice. Taken together, our study suggests that immune-promoting antler velvet can be produced through fermentation using L. rhamnosus LFR20-004 and L. sakei LFR20-007.

구아바잎 추출물이 난소절제 흰쥐에 미치는 항산화 및 혈관보호 효과 (Effect of oral guava leaf extract administration on antioxidant and vasculoprotective activity in ovariectomized rats)

  • 고은정;유아남;김현숙
    • Journal of Nutrition and Health
    • /
    • 제50권3호
    • /
    • pp.236-245
    • /
    • 2017
  • 본 연구에서는 난소절제 흰쥐에 구아바잎 추출물을 8주 동안 경구투여한 결과 난소절제 대조군인 OVX군과 비교시 체중 증가량 및 혈중 유리지방산이 유의적으로 감소된 것을 확인하였다. 또한 간 내 중성지방 농도가 $OVX{\cdot}GL$군과 $OVX{\cdot}GH$군에서 모두 유의적으로 감소하였으며 혈중 항산화 효소인 GPx 농도가 유의적으로 증가하였다. 간 내 항산화 효소 및 eNOS의 mRNA 발현 정도를 측정한 결과 OVX군에 비해 구아바잎 추출물 급여군인 $OVX{\cdot}GL$군과 $OVX{\cdot}GH$군에서 모두 Nrf2 및 CAT의 mRNA 발현 정도가 유의적으로 증가하였으며 eNOS또한 $OVX{\cdot}GH$군에서 유의적으로 증가함을 확인할 수 있었다. 따라서 본 연구의 결과를 종합해 볼 때 구아바잎 추출물 경구투여는 항산화 효소의 활성을 증가시키고 혈관내피세포의 기능을 향상시킴으로써 폐경 후 나타날 수 있는 혈관질환과 산화스트레스로 인한 대사적 장애 개선에 도움이 될 것으로 사료된다.

Effect of corn gluten and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet

  • Kim, Joo-Hee;Park, Ju-Yeon;Hong, So-Young;Kim, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.200-207
    • /
    • 2009
  • This study examined the effects of com gluten (CG) and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=40) were fed a high-fat diet (40% calorie as fat) for 4 weeks. They were then randomly divided into four groups and fed the isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate A (CGHA group, 30% of protein as peptides and 70% as free amino acids) and CG hydrolysate P (CGHP group, 93% of protein as peptides and 7% as free amino acids). Body weight gain, adipose tissue weights, nitrogen balance, absorptions of energy, protein and fat, lipid profiles in plasma, liver and feces and hepatic activities of camitine palmitoyl transferase (CPT), fatty acid synthase (FAS), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) were assessed. The CGHA diet had the highest amount of BCAAs, especially leucine, and most of them existed as free amino acid forms. The CGHA group showed significant weight reduction and negative nitrogen balance. Protein absorption and apparent protein digestibility in the CGHA group were significantly lower than those in other groups. Adipose tissue weights were the lowest in the CGHA group. Activity of CPT tended to be higher in the CGHA group than in other groups and those of FAS, ME and G6PDH were significantly lower in the CGHA group than in other groups. In conclusion, the CGHA diet which had relatively high amounts of free amino acids and BCAAs, especially leucine, had a weight reduction effect by lowering adipose tissue weight and the activities of FAS, ME and G6PDH in experimental animals, but it seemed to be a negative result induced by lowering protein absorption, increasing urinary nitrogen excretion and protein catabolism.

Effects of Dietary Methionine and Folate Supplementation in Ethanol-Fed Rats

  • Mun, Ju-Ae;Min, Hye-Sun
    • Nutritional Sciences
    • /
    • 제9권2호
    • /
    • pp.106-111
    • /
    • 2006
  • Chronic alcohol consumption is associated with perturbation of hepatic metabolism of sulphur-containing amino acid. The goal of present study was to evaluate the influence of dietary supplementation of methionine or folate to chronically ethanol-fed mts on the metabolism of sulfur-containing amino acids and one-carbon metabolism. Sprague-Dawley male mts were fed Lieber-Decarli liquid diet with 0% ethanol (control), 36% ethanol (E), 36% ethanol combined with methionine supplement (EM) or folate supplement (EF) for 8 weeks. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma folate and homocysteine (Hcy), urinary excretion of folate and formiminoglutamate were investigated after feeding experimental diets. Growth was retarded by 36% ethanol consupmtion (E, EM and EF) (p<0.01). Liver total fat (p<0.05) and plasma ALT (P<0.01) were increased by methionine supplementation (EM), implicating fatty liver and liver injury. Liver folate was increased slightly by folate supplementation (EF) (p=0.077). Urinary folate loss was increased 2.3 fold by ethanol consumption (E) and 17.2 fold by folate supplementation (EF), while decreased by methionine supplementation (EM) (p<0.000l). Plasma Hcy was increased 1.9 fold by methionine supplementation (EM) in ethanol-fed mts (p<0.05), which was related with decreased methionine synthase activity (p<0.05). Hepatic SAM/SAH ratio was depressed by methionine supplementation in ethanol-fed mts (EM) (p<0.05). Urinary formininoglutamate (Figlu) excretion after histidine loading was increased by ethanol ingestion and reduced by methionine supplementation (p<0.00l). Based on these data, methionine supplementation appears to accelerate histidine oxidation. In conclusion, dietary supplementation of methionine to ethanol-fed mts exacerbates alcoholic liver injury possibly by complicating sulphur-containing amino acid metabolism, as while it may have beneficial effects on folate and histidine metabolism.

Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice

  • Kang, Ji-Hye;Lee, Hyun-Ah;Kim, Hak-Ju;Han, Ji-Sook
    • Nutrition Research and Practice
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. MATERIALS/METHODS: The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. RESULTS: After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor ${\gamma}$, and CCAAT/enhancer binding protein ${\alpha}$ in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. CONCLUSIONS: These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice.

3T3-L1 지방세포에서 lipogenesis 저해제와 lipolysis 촉진제로서 Dipterocarpus tuberculatus Roxb.의 새로운 역할 (Novel Role of Dipterocarpus tuberculatus Roxb. as a Lipogenesis Inhibitor and Lipolysis Stimulator in 3T3-L1 Adipocytes)

  • 이수진;김지은;최윤주;진유정;노유정;설아윤;송희진;황대연
    • 생명과학회지
    • /
    • 제32권11호
    • /
    • pp.855-864
    • /
    • 2022
  • Dipterocarpus tuberculatus Roxb.의 약리학적 효능은 광노화(photoaging), 염증(inflammation), 간독성(hepatotoxicity), 급성 위염(acute gastritis) 및 골유착(osseointegration)을 포함한 일부 분야에서만 연구되었다. 비만에 대한 D. tuberculatus의 새로운 효능을 규명하기 위해, Dipterocarpus tuberculatus Roxb.의 메탄올 추출물(MED)을 처리한 3T3-L1 지방세포에서 지방축적에 대한 억제효과와 지방분해에 대한 촉진효과를 연구하였다. MDI로 분화를 유도한 3T3-L1 지방세포에 분화 기간동안 MED를 처리했을 때, peroxisome proliferator-activated receptor (PPAR)γ와 CCAAT-enhancer binding protein (C/EBP) α의 mRNA 수준 뿐만 아니라 adipocyte fatty acid binding protein 2 (aP2)과 fatty acid synthase (FAS)의 발현을 억제하였다. MDI로 분화를 유도한 3T3-L1 지방세포에 분화 기간 동안 MED를 처리했을 때, Oil red O로 염색된 지방방울(lipid droplets)에서 유사한 감소가 관찰되었다. 더불어, 3T3-L1 지방세포에 MDI로 분화를 유도한 후 MED를 처리했을때, cAMP농도, free glycerol 농도, lipases의 발현을 포함한 lipolytic target의 증가가 관찰되었다. 이러한 결과는 MED가 MDI로 분화를 유도한 3T3-L1 지방세포에서 lipogenesis 저해제와 lipolysis 촉진제로서 새로운 역할을 갖음을 제시하고 있다.

Sequencing of cDNA Clones Expressed in Adipose Tissues of Korean Cattle

  • Bong, J.J.;Tong, K.;Cho, K.K.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.483-489
    • /
    • 2005
  • To understand the molecular mechanisms that regulate intramuscular fat deposition and its release, cDNA clones expressed in adipose tissues of Korean cattle were identified by differential screening from adipose tissue cDNA library. By partial nucleotide sequencing of 486 clones and a search for sequence similarity in NCBI nucleotide databases, 245 clones revealed unique clones. By a functional grouping of the clones, 14% of the clones were categorized to metabolism and enzyme-related group (stearoyl CoA desaturase, lactate dehydrogenase, fatty acid synthase, ATP citrate lyase, lipoprotein lipase, acetyl CoA synthetase, etc), and 6% to signal transduction/cell cycle-related group (C/EBP, cAMP-regulated phosphoprotein, calmodulin, cyclin G1, cyclin H, etc), and 4% to cytoskeleton and extracellular matrix components (vimentin, ankyrin 2, gelosin, syntenin, talin, prefoldin 5). The obtained 245 clones will be useful to study lipid metabolism and signal transduction pathway in adipose tissues and to study obesity in human. Some clones were subjected to full-sequencing containing open reading frame. The cDNA clone of bovine homolog of human prefoldin 5 gene had a total length of 959 nucleotides coding for 139 amino acids. Comparison of the deduced amino acid sequences of bovine prefoldin 5 with those of human and mouse showed over 95% identity. The cDNA clone of bovine homolog of human ubiquitin-like/S30 ribosomal fusion protein gene had a total length of 484 nucleotides coding for 133 amino acids. Comparison of the deduced amino acid sequences of bovine ubiquitin-like/S30 ribosomal fusion protein gene with those of human, rat and mouse showed over 97% identity. The cDNA clone of bovine homolog of human proteolipid protein 2 mRNA had a total length of 928 nucleotides coding for 152 amino acids. Comparison of the deduced amino acid sequences of bovine proteolipid protein 2 with those of human and mouse showed 87.5% similarity. The cDNA clone of bovine homolog of rat thymosin beta 4 had a total length of 602 nucleotides coding for 44 amino acids. Comparison of the deduced amino acid sequences of bovine thymosin beta 4 gene with those of human, mouse and rat showed 93.1% similarity. The cDNA clone of bovine homolog of human myotrophin mRNA had a total length of 790 nucleotides coding for 118 amino acids. Comparison of the deduced amino acid sequences of bovine myotrophin gene with those of human, mouse and rat showed 83.9% similarity. The functional role of these clones in adipose tissues needs to be established.

Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs

  • Li, Wei;Li, Bo;Lv, Jiaqi;Dong, Li;Zhang, Lili;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.686-695
    • /
    • 2018
  • Objective: The objective of this study was to investigate the effects of dietary choline supplementation on hepatic lipid metabolism and gene expression in finishing pigs with intrauterine growth retardation (IUGR). Methods: Using a $2{\times}2$ factorial design, eight normal birth weight (NBW) and eight IUGR weaned pigs were fed either a basal diet (NBW pigs fed a basal diet, NC; IUGR pigs fed a basal diet, IC) or a diet supplemented with two times more choline than the basal diet (NBW pigs fed a high-choline diet, NH; IUGR pigs fed a high-choline diet, IH) until 200 d of age. Results: The results showed that the IUGR pigs had reduced body weight compared with the NBW pigs (p<0.05 from birth to d 120; p = 0.07 from d 120 to 200). Increased (p<0.05) free fatty acid (FFA) and triglyceride levels were observed in the IUGR pigs compared with the NBW pigs. Choline supplementation decreased (p<0.05) the levels of FFAs and triglycerides in the serum of the pigs. The activities of malate dehydrogenase and glucose 6-phosphate dehydrogenase were both increased (p<0.05) in the livers of the IUGR pigs. Choline supplementation decreased (p<0.05) malate dehydrogenase activity in the liver of the pigs. Gene expression of fatty acid synthase (FAS) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation decreased (p<0.05) FAS and acetyl-CoA carboxylase ${\alpha}$ expression in the livers of the IUGR pigs. The expression of carnitine palmitoyl transferase 1A (CPT1A) was lower (p<0.05) in the IC group than in the other groups, and choline supplementation increased (p<0.05) the expression of CPT1A in the liver of the IUGR pigs and decreased (p<0.01) the expression of hormone-sensitive lipase in both types of pigs. The gene expression of phosphatidylethanolamine N-methyltransferase (PEMT) was higher (p<0.05) in the IC group than in the other groups, and choline supplementation significantly reduced (p<0.05) PEMT expression in the liver of the IUGR pigs. Conclusion: In conclusion, the lipid metabolism was abnormal in IUGR pigs, but the IUGR pigs consuming twice the normal level of choline had improved circulating lipid parameters, which could be related to the decreased activity of nicotinamide adenine dinucleotide phosphate-generating enzymes or the altered expressions of lipid metabolism-related genes.