• Title/Summary/Keyword: Fatty acid ${\beta}$-oxidation

Search Result 101, Processing Time 0.038 seconds

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Changes of Serum Fatty Acid and Carnitine Levels after Administration of L-carnitine in Rats (흰쥐에서 L-carnitine 투여 후에 혈청 지방산과 Carnitine의 농도 변화)

  • Lee, Jae Won;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1075-1082
    • /
    • 2002
  • Purpose : Obesity is known to be associated with hypertension, dyslipidemia, and fatty liver and is thought to be associated with increased levels of free fatty acids. One of the strategies for decreasing free fatty acid levels is stimulation of hepatic lipid oxidation with L-carnitine. Carnitine is an essential cofactor for transport of long-chain fatty acid into mitochondria for oxidation. This study was designed to evaluate the changes of serum fatty acids and carnitine levels after exogenous injection of L-carnitine. Methods : Sprague Dawley rats were divided into two groups. Group A was control. Group B was given intraperitoneal injection with L-carnitine(200 mg/kg) daily for two weeks. Serum lipid (total cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol) and fatty acid levels were analyzed on the first day of the first and second weeks after injection of L-carnitine. Total, free, and acyl carnitine levels also were performed by a enzymatic cycling techniques at the same day intervals. Results : There was no significant difference between the two groups in total cholesterol, HDL-cholesterol, LDL-cholesterol levels before and after the administration of L-carnitine. But triglyceride levels were significantly decreased at the first week in group B compared with group A. Among free fatty acids, linoleic acid showed significant decrement(A group : $131.3{\pm}31.3mg/dL$ vs B group : $90.0{\pm}7.0mg/dL$) at the first week. Total, free, and acyl carnitine levels showed significant increments at all days intervals, but only free carnitine showed significant increments according to cumulative doses of carnitine. Conclusion : Plasma linoleic acid, a long-chain fatty acid, showed significant decrement after administration of L-carnitine in the first week. This may suggest that L-carnitine can be used as an antilipidemic agent for obese patients. A prospective study will investigate obese children in the future.

Oxidative Stability of Wheat germ Lipid and Changes in the Concentration of Carotenoid and Tocopherol during Oxidation (밀배아 지방질의 산화 안정성과 카로티노이드 및 토코페롤의 변화)

  • Kim, Hae-Gyoung;Cheigh, Hong-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.478-482
    • /
    • 1995
  • The changes of the lipid composition and of the contents of carotenoid and tocopherol in wheat germ were studied during the storage at $30^{\circ}C$. The contents of triglyceride and free fatty acid were changed from 66% and 7% to 49% and 24% respectively after 30 days. The predominant free fatty acids were lauric acid (29%), palmitic acid (21%) and linoleic acid (20%), however, linoleic acid increased to 30%, lauric acid reduced to 21% after storage of 30 days. The carotenoids in the wheat germ were ${\beta}-carotene,\;{\alpha}-carotene$, lutein and taraxanthin, and the contents of these were 306, 59, 383 and 356 ng/g wheat germ, respectively. Their contents, however, were reduced to 36, 4, 203 and 149 ng respectively after 20 storage days. Especially, degradation rate of ${\beta}-carotene$ was 22.5 ng/day. The tocopherol isomers in wheat germ were ${\alpha}-,\;{\beta}-\;and\;{\gamma}-tocopherol$, and they reduced from $55,\;48\;and\;38\;{\mu}g/g$ wheat germ to 35, 32 and $32\;{\mu}g$ respectively after 20 storage days. The ${\alpha}-tocopherol$ was degraded by $1.26\;{\mu}g/day$ at this storage condition.

  • PDF

Anti-Obese Activity of HPJ Extract on High Fat Diet-Induced Obese Mice (고지방 식이로 유도된 비만 쥐에서 HPJ 추출물의 항비만 효과)

  • Yuan, Hai-Dan;Quan, Hai-Yan;Zhang, Ya;Kim, Sung-Jib;Shin, Dae-Hee;Lim, Bang-Ho;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2009
  • In this study, we investigated the anti-obese activity of HPJ extract in C57BL/6J mice. The C57BL/6J mice were randomly divided into five groups: normal control group (Con), high fat diet control group (HFD), treatment groups with HPJ at 125 mg/kg (HPJ125), 250 mg/kg (HPJ250), or 500 mg/kg (HPJ500). To induce an obesity, mice were fed by a high fat diet for 6 weeks, and mice were administered with HPJ extract once a day for 8 weeks. At the end of treatment, we examined the effect of HPJ extract on body weight, plasma lipid, and lipogenic enzymes. HPJ extract was found to lower whole body and epididymal adipose tissue weights and lowered plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) and leptin, compared to those in HFD group. Histological analyses of the liver and fat tissues of mice treated with HPJ extract revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the HFD group. In addition, HPJ extract preserved the morphological integrity of pancreatic islets. To elucidate an action mechanism of HPJ extract, Western blot and RT-PCR were performed using epididymal adipose tissues. HPJ extract up-regulated the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylasse (ACC). HPJ extract also attenuated lipogenic gene expressions of sterol regulatory element-binding protein $1{\alpha}$ (SREBP$1{\alpha}$), fatty acid synthase (FAS), sterol-CoA desaturase 1 (SCD1) and glycerol-3-phosphate acyltransferase (GPAT) in dose-dependent manners. In contrast, expressions of lipolytic genes such as peroxisome proliferator-activated receptor-$\alpha$ (PPAR-${\alpha}$) and CD36, and fatty acid $\beta$-oxidation gene, carnitine palmitoyltransferase-1 (CPT-1) were increased. These results suggest that HPJ extract ameliorates obesity through inhibiting synthesis of lipogenic enzymes as well as stimulating fatty acid oxidation resulting from activation of AMPK, and HPJ extract could be developed as a potential therapeutic agent for obese patients.

Regulation of PPAR and SREBP-1C Through Exercise in White Adipose Tissue of Female C57BL/6J Mice

  • Jeong, Sun-Hyo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.227-236
    • /
    • 2012
  • Previous study showed that swimming improved obesity but was not through $PPAR{\alpha}$ activation in liver and skeletal muscle in high fat diet-fed female mice with functioning ovaries as an animal model of obese premenopausal women. Thus, this study was aimed at investigation of the effects of swimming on the promotion of health and its molecular mechanism in adipose tissue of high fat diet-fed female mice. Eight-week-old female C57BL/6J mice were randomly divided into two groups (a non-swim control group and a swim group, n=8/group). Mice in the swim group swam for 2 h daily for 6 weeks in water bath with temperature of $35{\pm}1^{\circ}C$. All the animals received high fat diet (45% kcal fat) for 6 weeks. Reverse transcription-polymerase chain reaction was used to elucidate the molecular mechanism. Female mice subjected to swimming had significantly decreased body weight gain and white adipose tissue mass compared with the female control mice. Histological studies illustrated that swimming decreases the hepatic lipid accumulation. As expected, swimming did not affect the expression of mRNA levels of peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ and $PPAR{\alpha}$ target genes responsible for mitochondrial fatty acid ${\beta}$-oxidation, such as carnitine palmitoyltransgerase-1 and medium chain acyl-CoA dehydrogenase in the white adipose tissue. However, mice that underwent 6-weeks of swimming exercise had decreased the mRNA expression of lipogenic genes, such as sterol regulatory element-binding proteins-1C and fatty acid synthase in comparison to sedentary control mice, with decreased $PPAR{\gamma}$ target genes involved in adipocyte-specific marker genes, such as adipocyte fatty acid binding protein and leptin in the white adipose tissue. These results suggest that swimming can effectively prevent obesity induced by high fat diet-fed, in part through down-regulation of adipogenesis and lipogenesis in white adipose tissue of female obese mice. Moreover, these results suggest that swimming maybe contributing the promotion of health through regulation of adipogenesis and lipogenesis in overweight premenopausal women.

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts

  • Ziyi, Pan;Guoqing, Du;Guoyu, Li;Dongsheng, Wu;Xingyong, Chen;Zhaoyu, Geng
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1199-1214
    • /
    • 2022
  • Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice

  • Cho, Su-Jung;Jung, Un Ju;Kim, Hye-Jin;Ryu, Ri;Ryoo, Jae Young;Moon, Byoung Seok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2015
  • Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic ${\beta}$-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic ${\beta}$-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.

A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome

  • Wu, Xuangao;Jin, Bo Ram;Yang, Hye Jeong;Kim, Min Jung;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.229-237
    • /
    • 2019
  • More effective treatments are needed for non-alcoholic fatty liver disease (NAFLD). We hypothesized that water extracts of blackberry fruits (BF) and leaves (BL) and their combinations (BFL) reduce fat deposition in HepG2 cells and modulate shor-tchain fatty acids (SCFA) and fecal bacteria in vitro. HepG2 cells were treated with BF, BL, BFL1:2, and BFL1:3 for 1 h, and 0.5 mM palmitate was added to the cells. Moreover, low ($30{\mu}g/mL$) and high doses ($90{\mu}g/mL$) of BL and BF were applied to fecal bacteria in vitro, and SCFA was measured by GC. BL, BF, BFL1:2, and BFL1:3 reduced triglyceride deposition in the cells in a dose-dependent manner, and BFL1:2 and BFL1:3 had a stronger effect than BF. The content of malondialdehyde, an index of oxidative stress, was also reduced in BL, BF, and BFL1:2 with increasing superoxide dismutase and glutathione peroxidase activities. The mRNA expression of acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein-1c was reduced in BL, BF, BFL1:2, and BFL1:3 compared to the control, and BFL1:2 had the strongest effect. By contrast, the carnitine palmitolytransferase-1expression, a regulator of fatty acid oxidation, increased mostly in BFL1:2 and BFL1:3. Tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$ expression was reduced in BL compared to that in BF and BFL1:2 in HepG2 cells. Interestingly, BL increased propionate production, and BF increased butyrate and propionate production and increased total SCFA content in fecal incubation. BF increased the contents of Bifidobacteriales and Lactobacillales and decreased those of Clostridiales, whereas BL elevated the contents of Bacteroidales and decreased those of Enterobacteriales. In conclusion, BFL1:2 and BFL1:3 may be potential therapeutic candidates for NAFLD.

A Case of Childhood Cerebral Form Adrenoleukodystrophy with Novel Mutation in the ABCD1 Gene (새로운 ABCD1 유전자의 돌연변이를 가지는 소아 대뇌형 부신백질이영양증 1례)

  • Shin, Young-Lim
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2012
  • X-linked adrenoleukodystrophy (ALD) is a rare inherited metabolic disease which results in impaired peroxisomal ${\beta}$-oxidation and the accumulation of very long chain fatty acids (VLCFA) in the adrenal cortex, the myelin of the central nervous system, and the testes. X-linked ALD is caused by mutations in the ABCD1 gene encoding an ATP-binding cassette transporter superfamily located in the peroxisomal membrane. This disease is characterized by a variety of phenotypes. The classic childhood cerebral ALD is a rapidly progressive demyelinating condition affecting the cerebral white matter before the age of 10 years in boys. We report the case of a 8-year-old with childhood cerebral X-linked ALD who developed inattention, hyperactivity, motor incoordination and hemiparesis. We diagnosed ALD with elevated plasma very long chain fatty acid level and diffuse high signal intensity lesions in both parieto-occipital white matter and cerebellar white matter in brain MRI. We identified a novel c.983delT (p.Met329CysfsX7) mutation of the ABCD1 gene. There is no correlation between X-ALD phenotype and mutations in the ABCD1 gene. Further studies for searching additional non-genetic factor which determine the phenotypic variation will be needed.

  • PDF

Molecular Structure of the PHA Synthesis Gene Cluster from New mcl-PHA Producer Pseudomonas putida KCTC1639

  • KIM TAE-KWON;VO MINH TRI;SHIN HYUN-DONG;LEE YONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1120-1124
    • /
    • 2005
  • Pseudomonas putida KCTC 1639 was newly identified as a potential producer of biodegradable medium chain length polyhydroxyalkanoates. It exhibited a carbon assimilation pattern quite different from other known P. putida strains, but a more similar pattern with P. oleovorans, which assimilates the carbon sources mainly through ${\beta}$-oxidation rather than the fatty acid biosynthesis pathway. The PHA synthesis gene cluster from P. putida KCTC1639 was composed of two gene loci; the PHA synthase gene locus and granule-associated gene locus, which were cloned and deposited in the GenBank under accession numbers AY286491 and AY750858 as a new nucleotide sequence, respectively. The molecular structure and amino acid homology of the new gene cluster were compared with those from Pseudomonas species, including other P. putida strains and P. oleovorans, and a higher than $90\%$ homology was observed.