• 제목/요약/키워드: Fatty Acid $\beta$-oxidation

검색결과 101건 처리시간 0.025초

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens;Bonin, Anne;Mangin, Stefanie;Bucher, Joachim;Kopacz, Stephanie;Matz-Soja, Madlen;Thiel, Carlo;Gebhardt, Rolf;Hofmann, Ute;Mauch, Klaus
    • BMB Reports
    • /
    • 제45권7호
    • /
    • pp.396-401
    • /
    • 2012
  • Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

흰쥐에서 L-carnitine 투여 후에 혈청 지방산과 Carnitine의 농도 변화 (Changes of Serum Fatty Acid and Carnitine Levels after Administration of L-carnitine in Rats)

  • 이재원;홍영미
    • Clinical and Experimental Pediatrics
    • /
    • 제45권9호
    • /
    • pp.1075-1082
    • /
    • 2002
  • 목 적: L-carnitine은 carnitine acyltransferase 효소에 의해 장쇄(long chain)지방산을 세포질에서 미토콘드리아로 이동시킬 때 필요한 효소로 미토콘드리아 내로 이동된 장쇄 지방산은 ${\beta}$-산화를 거쳐 신체의 에너지원으로 사용된다. 비만 치료 방법의 하나로 L-carnitine을 투여하여 간과 근육세포의 산화를 증가시켜 혈청 지방을 감소시키려는 시도가 있으며, 실제로 L-carnitine이 혈청 지방산을 낮추는지를 알아보기 위해 본 연구를 실시하였다. 방 법: 250 g 내외의 Sprague Dawley 쥐를 두 군으로 나누어 실험하였다. A군은 정상 대조군, B군에서 L-carnitine을 200 mg/kg씩 매일 복강 내로 투여하였다. Hitachi 기기를 이용하여 총 콜레스테롤, 중성지방, 고분자량 콜레스테롤, 저분자량 콜레스테롤을 측정하였고, 혈청 C6-C18 지방산은 GC/MS 분석에 의해 1일, 1주, 2주에 측정하였다. Cycling 기법을 이용하여 총 carnitine, 유리 carnitine, 아실 carnitine을 정량 분석하였다. 결 과 : 1) 혈청 총 콜레스테롤, 고분자량 콜레스테롤, 저분자량 콜레스테롤은 두 군 사이에 유의한 차이가 없었으나, 중성지방은 1주일째에 A군은 $131.3{\pm}31.3mg/dL$인데 반하여 B군은 $90.0{\pm}7.0mg/dL$로 의미있는 감소를 보였다. 2) 혈청 총 지방산은 A군에 비해 B군에서 1주에만 약간의 감소를 보였으나 통계학적 유의성은 없었다. 1주일째 장쇄 지방산인 리놀레인 산(linoleic acid)이 B군에서 A군에 비해 유의하게 감소하였다. 3) L-carnitine투여 후 carnitine(total, free, acyl) 치는 1일째, 1주일째 및 2주일째에 모두 B군이 A군보다 유의하게 높았으나, 유리 carnitine 만이 투여 누적 용량에 따라서 유의한 증가를 보였다. 결 론 : L-carnitine 투여 후 1주일째에 혈중 중성 지방의 농도가 감소하였고, 리놀레인 산이 미토콘드리아 내로 이동함으로 혈중 농도의 감소를 보였다.

밀배아 지방질의 산화 안정성과 카로티노이드 및 토코페롤의 변화 (Oxidative Stability of Wheat germ Lipid and Changes in the Concentration of Carotenoid and Tocopherol during Oxidation)

  • 김혜경;최홍식
    • 한국식품과학회지
    • /
    • 제27권4호
    • /
    • pp.478-482
    • /
    • 1995
  • 밀배아를 저장온도 $30^{\circ}C$에서 산화반응을 시키면서 밀배아 지방질의 구성성분과 지방산의 함량변화를 관찰하였고, 이에 따른 카로티노이드와 토코페롤의 산화양상을 살펴보았다. 밀배아 지방질 구성성분의 변화를 보면 초기에는 triglyceride 함량이 66%, 유리지방산 함량이 7%였는데 30일 저장 후에는 각각 49%, 24%로 변하였다. 유리지방산의 조성은 초기에 lauric acid(29%), palmitic acid(21%), linoleic acid(20%)이던 것이 30일 후에는 linoleic acid가 30%로 크게 증가하였다. 밀배아 중에 있는 카로티노이드로는 베타-, 알파-카로틴, lutein, taraxanthin 등이 있었으며 이들의 함량은 저장 전에는 밀배아 1g당 각각 306, 59, 383, 356ng이던 것이 20일 저장 후에는 36, 4, 203, 149 ng으로 현저하게 감소하였는데 특히 베타-카로틴의 산화가 심하여 22.5ng/day의 최대 산화속도를 나타냈다. 밀배아 중의 토코페롤 동족체로는 알파-, 베타-, 감마-토코페롤 등이 있었는데 이들의 함량은 밀배아 1g당 각각 $55,\;48,\;38\;{\mu}g$이었고, 특히 가장 산화가 심하였던 알파-토코페롤의 최대 산화속도는 $1.26\;{\mu}g/day$를 나타내었다.

  • PDF

고지방 식이로 유도된 비만 쥐에서 HPJ 추출물의 항비만 효과 (Anti-Obese Activity of HPJ Extract on High Fat Diet-Induced Obese Mice)

  • 원해단;권해연;장아;김성집;신대희;임방호;정성현
    • 약학회지
    • /
    • 제53권5호
    • /
    • pp.286-292
    • /
    • 2009
  • In this study, we investigated the anti-obese activity of HPJ extract in C57BL/6J mice. The C57BL/6J mice were randomly divided into five groups: normal control group (Con), high fat diet control group (HFD), treatment groups with HPJ at 125 mg/kg (HPJ125), 250 mg/kg (HPJ250), or 500 mg/kg (HPJ500). To induce an obesity, mice were fed by a high fat diet for 6 weeks, and mice were administered with HPJ extract once a day for 8 weeks. At the end of treatment, we examined the effect of HPJ extract on body weight, plasma lipid, and lipogenic enzymes. HPJ extract was found to lower whole body and epididymal adipose tissue weights and lowered plasma levels of glucose, insulin, triglyceride (TG), total cholesterol (TC), non-esterified fatty acid (NEFA) and leptin, compared to those in HFD group. Histological analyses of the liver and fat tissues of mice treated with HPJ extract revealed significantly decreased number of lipid droplets and decreased size of adipocytes compared to the HFD group. In addition, HPJ extract preserved the morphological integrity of pancreatic islets. To elucidate an action mechanism of HPJ extract, Western blot and RT-PCR were performed using epididymal adipose tissues. HPJ extract up-regulated the levels of phosphorylated adenosine monophosphate-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylasse (ACC). HPJ extract also attenuated lipogenic gene expressions of sterol regulatory element-binding protein $1{\alpha}$ (SREBP$1{\alpha}$), fatty acid synthase (FAS), sterol-CoA desaturase 1 (SCD1) and glycerol-3-phosphate acyltransferase (GPAT) in dose-dependent manners. In contrast, expressions of lipolytic genes such as peroxisome proliferator-activated receptor-$\alpha$ (PPAR-${\alpha}$) and CD36, and fatty acid $\beta$-oxidation gene, carnitine palmitoyltransferase-1 (CPT-1) were increased. These results suggest that HPJ extract ameliorates obesity through inhibiting synthesis of lipogenic enzymes as well as stimulating fatty acid oxidation resulting from activation of AMPK, and HPJ extract could be developed as a potential therapeutic agent for obese patients.

Regulation of PPAR and SREBP-1C Through Exercise in White Adipose Tissue of Female C57BL/6J Mice

  • Jeong, Sun-Hyo
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.227-236
    • /
    • 2012
  • Previous study showed that swimming improved obesity but was not through $PPAR{\alpha}$ activation in liver and skeletal muscle in high fat diet-fed female mice with functioning ovaries as an animal model of obese premenopausal women. Thus, this study was aimed at investigation of the effects of swimming on the promotion of health and its molecular mechanism in adipose tissue of high fat diet-fed female mice. Eight-week-old female C57BL/6J mice were randomly divided into two groups (a non-swim control group and a swim group, n=8/group). Mice in the swim group swam for 2 h daily for 6 weeks in water bath with temperature of $35{\pm}1^{\circ}C$. All the animals received high fat diet (45% kcal fat) for 6 weeks. Reverse transcription-polymerase chain reaction was used to elucidate the molecular mechanism. Female mice subjected to swimming had significantly decreased body weight gain and white adipose tissue mass compared with the female control mice. Histological studies illustrated that swimming decreases the hepatic lipid accumulation. As expected, swimming did not affect the expression of mRNA levels of peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ and $PPAR{\alpha}$ target genes responsible for mitochondrial fatty acid ${\beta}$-oxidation, such as carnitine palmitoyltransgerase-1 and medium chain acyl-CoA dehydrogenase in the white adipose tissue. However, mice that underwent 6-weeks of swimming exercise had decreased the mRNA expression of lipogenic genes, such as sterol regulatory element-binding proteins-1C and fatty acid synthase in comparison to sedentary control mice, with decreased $PPAR{\gamma}$ target genes involved in adipocyte-specific marker genes, such as adipocyte fatty acid binding protein and leptin in the white adipose tissue. These results suggest that swimming can effectively prevent obesity induced by high fat diet-fed, in part through down-regulation of adipogenesis and lipogenesis in white adipose tissue of female obese mice. Moreover, these results suggest that swimming maybe contributing the promotion of health through regulation of adipogenesis and lipogenesis in overweight premenopausal women.

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts

  • Ziyi, Pan;Guoqing, Du;Guoyu, Li;Dongsheng, Wu;Xingyong, Chen;Zhaoyu, Geng
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1199-1214
    • /
    • 2022
  • Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice

  • Cho, Su-Jung;Jung, Un Ju;Kim, Hye-Jin;Ryu, Ri;Ryoo, Jae Young;Moon, Byoung Seok;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제20권2호
    • /
    • pp.94-101
    • /
    • 2015
  • Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic ${\beta}$-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic ${\beta}$-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.

A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome

  • Wu, Xuangao;Jin, Bo Ram;Yang, Hye Jeong;Kim, Min Jung;Park, Sunmin
    • Journal of Applied Biological Chemistry
    • /
    • 제62권3호
    • /
    • pp.229-237
    • /
    • 2019
  • More effective treatments are needed for non-alcoholic fatty liver disease (NAFLD). We hypothesized that water extracts of blackberry fruits (BF) and leaves (BL) and their combinations (BFL) reduce fat deposition in HepG2 cells and modulate shor-tchain fatty acids (SCFA) and fecal bacteria in vitro. HepG2 cells were treated with BF, BL, BFL1:2, and BFL1:3 for 1 h, and 0.5 mM palmitate was added to the cells. Moreover, low ($30{\mu}g/mL$) and high doses ($90{\mu}g/mL$) of BL and BF were applied to fecal bacteria in vitro, and SCFA was measured by GC. BL, BF, BFL1:2, and BFL1:3 reduced triglyceride deposition in the cells in a dose-dependent manner, and BFL1:2 and BFL1:3 had a stronger effect than BF. The content of malondialdehyde, an index of oxidative stress, was also reduced in BL, BF, and BFL1:2 with increasing superoxide dismutase and glutathione peroxidase activities. The mRNA expression of acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein-1c was reduced in BL, BF, BFL1:2, and BFL1:3 compared to the control, and BFL1:2 had the strongest effect. By contrast, the carnitine palmitolytransferase-1expression, a regulator of fatty acid oxidation, increased mostly in BFL1:2 and BFL1:3. Tumor necrosis factor-${\alpha}$ and interleukin-$1{\beta}$ expression was reduced in BL compared to that in BF and BFL1:2 in HepG2 cells. Interestingly, BL increased propionate production, and BF increased butyrate and propionate production and increased total SCFA content in fecal incubation. BF increased the contents of Bifidobacteriales and Lactobacillales and decreased those of Clostridiales, whereas BL elevated the contents of Bacteroidales and decreased those of Enterobacteriales. In conclusion, BFL1:2 and BFL1:3 may be potential therapeutic candidates for NAFLD.

새로운 ABCD1 유전자의 돌연변이를 가지는 소아 대뇌형 부신백질이영양증 1례 (A Case of Childhood Cerebral Form Adrenoleukodystrophy with Novel Mutation in the ABCD1 Gene)

  • 신영림
    • 대한유전성대사질환학회지
    • /
    • 제12권1호
    • /
    • pp.49-53
    • /
    • 2012
  • X 연관 부신백질이영양증(adrenoleukodystrophy, ALD)은 과산화소체베타산화과정(peroxisomal ${\beta}$-oxidation)의 장애로 매우긴사슬지방산(very long chain fatty acids, VLCFA)이 신경계의 백질과 부신피질 및 고환에 축척된다. 이 질환은 과산화소체막단백질(peroxisomal membrane protein)을 형성하는 Xq28에 위치하는 ATP-binding cassette, subfamily D, member 1 (ABCD1) 유전자 돌연변이에 의해 주로 발생한다. X 연관 ALD는 다양한 임상양상을 보이는데 전형적인 소아대뇌형 부신백질이영양증은 10세 이전의 남아에서 대뇌백질에 빠르게 진행하는 탈수초현상을 보인다. 8세 된 남자 환아로 정상발달과정을 보이던 중 초등학교 입학 후에 집중장애와 산만한 모습으로 인해 주의력결핍과다활동장애로 진단받고 치료를 받았었다. 환아는 내원 8개월 전부터 말이 어눌해 지고 걸을 때 오른 발을 끌며 자주 넘어지는 모습을 보여 내원하였고 오른쪽 상, 하지의 근력이 떨어지는 양상이 관찰되었다. 검사상 부신기능저하증 소견을 보였으며 혈청 지방산 분석검사에서는 C26:0, C42:0/C22:0, C26:0/C22:0가 증가하였다. 뇌 자기공명영상에서는 T2와 FLAIR 강조영상에서 양측의 두정후두부의 백질과 소뇌의 백질에서 대칭적으로 고신호강도를 보였다. 환아는 부신백질이영양증로 진단하였고 ABCD1 유전자 분석 검사에서 새로운 c.983delT (p.Met329CysfsX7) 돌연변이가 확인되었다. X 연관 ALD는 유전자형과 표현형에 연관성이 없으며 다양한 임상양상을 보이기 때문에 환자들마다 임상증상을 잘 관찰해야 하며 향후 유전자 기능을 좀 더 파악하고 임상증상에 영향을 주는 다른 요소에 대한 연구가 필요할 것이라 사료된다.

  • PDF

Molecular Structure of the PHA Synthesis Gene Cluster from New mcl-PHA Producer Pseudomonas putida KCTC1639

  • KIM TAE-KWON;VO MINH TRI;SHIN HYUN-DONG;LEE YONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.1120-1124
    • /
    • 2005
  • Pseudomonas putida KCTC 1639 was newly identified as a potential producer of biodegradable medium chain length polyhydroxyalkanoates. It exhibited a carbon assimilation pattern quite different from other known P. putida strains, but a more similar pattern with P. oleovorans, which assimilates the carbon sources mainly through ${\beta}$-oxidation rather than the fatty acid biosynthesis pathway. The PHA synthesis gene cluster from P. putida KCTC1639 was composed of two gene loci; the PHA synthase gene locus and granule-associated gene locus, which were cloned and deposited in the GenBank under accession numbers AY286491 and AY750858 as a new nucleotide sequence, respectively. The molecular structure and amino acid homology of the new gene cluster were compared with those from Pseudomonas species, including other P. putida strains and P. oleovorans, and a higher than $90\%$ homology was observed.