• Title/Summary/Keyword: Fatigue-decreased Proficiency Limit

Search Result 3, Processing Time 0.017 seconds

Measurements of Whole-body Vibration Exposed from and Their UH60-helicopter Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1327-1331
    • /
    • 2005
  • This Paper addresses what amount of whole-body vibration is exposed to Korean pilots of UH60 helicopters during their mission flight. To measure the expose4 whole-body vibration, the 12-axis whole-body vibration measurement system was used. It enables the direct measurement of whole-body vibration exposed from the body contact area consisting of the feet, hip and back. The measured 12-axis vibration signals were used to evaluate the vibration comfort level experienced by the pilots of UH60 helicopters. The evaluated vibration comfort level is found to be closeto 0.74-0.79m/s, which is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to Korean pilots of UH60 helicopters during their mission flight, the rms-based and VDV(vibration dose value)-based evaluation schemes, recommended by ISO 2631-1:1977, were exploited in this work. The evaluated results indicate that Korean pilots cannot avoid the fatigue-decreased proficiency limit after two-hour continuous flight. The whole-body vibration level exposed from the UH60 helicopters during continuous 10-hours mission flight is found to reach to the vibration exposure limit.

Evaluation of Ride Vibrations of Agricultural Tractors (농업용 트랙터의 승차 진동 수준 평가)

  • Kim, H.J.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.151-156
    • /
    • 2008
  • This study was conducted to evaluate ride vibrations experienced by tractor operators during plowing, rotovating, and transporting operations in Korea. Field data of ride vibrations were taken at the operator-seat interface from 49 tractors and analyzed on the basis of ISO 2631-1 and EU Directive 2002/44. Of the measured ride vibrations 15.4% in the plowing and 12.5% in farm road transport exceeded the 8-hour fatigue decreased proficiency boundary in the fore and aft directions at frequencies from 1 to 5 Hz. 93.9% exceeded the 8-hour potential health risk of ISO 2631-1. The ride vibrations exceeding the 8-hour exposure limit were 38.5% in plowing, 31.6% in rotovating, 100% in farm road transport and 88.9% in concrete road transport. Although most tractor operators were not exposed to ride vibrations greater than the 8-hour exposure limit value (ELV) of EU Directive 2002/44, 7.7% of the operators in the plowing experienced greater vibrations than the ELV in the fore-aft direction. Farm road transport produced greater vibrations than any other operations. Concrete road transport, plowing and rotovating operations followed next. Limit criteria for ride vibration exposure differ depending upon the guidelines. Exposure limit of the health guidance caution zone of ISO 2631-1 is lowest among its kinds.

Measurements of Whole-body Vibration Exposed from UH60-Helicopter and Their Analysis Results (UH60 헬기 조종사의 피폭진동 측정 및 평가 결과)

  • Cheung, Wan-Sup;Byeon, Joo-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.132-137
    • /
    • 2005
  • This paper addresses what amount of whole-body vibration is exposed to pilots of UH60 helicopters during flight. To measure the whole-body exposed from the feet and seat, the 12-axis vibration measurement system was used. It enables simultaneous measurement of vibration exposure from the body contact area of the feet, hip and back. The measured 12-axis vibration signals are exploited to the comfort level of UH60 helicopters during flight. It is shown that the evaluated ride value is close to $0.74{\sim}0.79m/s^2$ and that it is equivalent to the semantic scale of 'fairly uncomfortable'. To assess the health effects of whole-body vibration exposed to pilots of UH60 helicopters during their flight, the rms-based and VDV(vibration dose value)-based evaluation results of measured four-axis vibration signals are shown in this work. The fatigue-decreased proficiency limit, whose level is half of the exposure limit, is expected to come after the two-hour flight. The exposure limit is shown to reach after the 10-hour flight.

  • PDF