• Title/Summary/Keyword: Fatigue system

Search Result 1,620, Processing Time 0.031 seconds

Changes of muscle fatigue by force compensation using upper limb wearing exoskeleton system (상지부 착용 외골격시스템의 근력보상 정도에 따른 근피로도 변화에 대한 연구)

  • Kang, Hyun-Min;Park, Su-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1600-1602
    • /
    • 2008
  • Various applications of exoskeleton system are reported in the area of military, healthcare, and industries. More the user gets help from exoskeleton system, more power is consumed. To resolve this design conflict, we suggest an energy efficient exoskeleton system which compensates muscle fatigue in isotonic and isometric contraction conditions. Fatigue compensated exoskeleton significantly reduced muscle fatigue while consumed less operation power. In addition, the level of fatigue compensation can be managed by motor control using various input profile. It can make user customized exoskeleton system.

  • PDF

The effect of pre-load and fatigue life for one-level pedicle screw system (단분절 척추경 나사못의 피로수명과 Pre-Load의 영향)

  • 김병일;이효재;송정일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1298-1301
    • /
    • 2003
  • The purpose of this research is to evaluate the effect of pre-load and fatigue life of the distracted one-level pedicle screw system. A spring, which acted as a substitute of the ligament, was installed in the one-level pedicle screw system before testing. The static and fatigue properties are now being tested, which includes 6mm rod to 6mm screw, 6mm rod to 6.5mm screw and 6.35mm rod to 6.5mm screw, under pre-load. Until now as test data were analyzed, 6mm rod to 6.5mm screw was found to have the best performances of stillness and fatigue lift, while 6mm rod to 6mm screw showed the shortest fatigue life. If the stiffness of screw was bigger than that of rod. the fatigue life was prolonged. The fatigue life of the distracted pedicle screw was proved to be shorter than that of the one-level pedicle screw system. So the fatigue life was shortened because of the effect of the spring on the flexibility and stiffness of the rod. In order to obtain the stability of the pedicle screw, more tests are under doing on this topic.

  • PDF

Evaluation of High Cycle Thermal Fatigue on Mixing Tee in Nuclear Power Plant (원전 Mixing Tee에서의 고주기 열피로 평가)

  • Lee, Sun Ki
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • In nuclear power plants, there is a risk of thermal fatigue in equipment and piping affecting system soundness because the temperature change of the system accompanies in every operation and shutdown. Therefore, in order to prevent the excess of the fatigue limit during the lifetime of plants, the fatigue limit of each piping material is determined in the designing stage. However, there are many cases where equipment or piping is locally subjected to thermal fatigue that is not considered in the design, resulting in damage to the equipment and piping, and failure during operation. Currently, local thermal fatigue generation mechanisms that are not taken into account in the design stage are gradually being identified. In this paper, the effects of the fluid temperature fluctuations on the piping soundness due to the mixing of hot and cold water, one of the local thermal fatigue generating mechanisms, were evaluated.

Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit (피로한도 이하에서 발생하는 압입축의 접촉손상 특성)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Ham, Young-Sam;You, Won-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

Fatigue Life Estimation for Flaperon Joint of Tilt-Rotor UAV (틸트 로터 무인항공기의 플랩퍼론 연결부에 대한 피로수명 평가)

  • Kim, Myung Jun;Park, Young Chul;Lee, Jung Jin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.12-19
    • /
    • 2009
  • The research for the fatigue analysis is regarded greatly as important in aerospace field. Moreover, a study on the fatigue characteristic is very actively progressing. In this study, the fatigue life estimation was performed for Flaperon Joint which has FCL(fatigue critical location) of tilt-rotor UAV. The Flaperon Joint should be taken the various loads by several missions profiles of UAV. The fatigue load spectrum of Flaperon Joint is generated by the standard mission segment for the tilt-rotor UAV, and this spectrum is used for the fatigue test and analysis. The in-house fatigue analysis program is applied to calculate the fatigue life based on Stress-Life(S-N) method. The S-N curve is generated from the S-N data of Mil-Handbook by second order polynomial regression method. Moreover, the coefficient of determination is used to ensure how accuracy it has. In addition, the Goodman equation is used to consider the mean stress effect for evaluating more accurate fatigue life. Finally, the result of fatigue analysis is verified by comparing with the fatigue test result for the Flaperon Joint.

  • PDF

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

Reliability analysis on fatigue Strength for Certification of Aircraft Composite Structures

  • Choi, Cheong Ho;Lee, Doo Jin;Jo, Jae Hyun;Bae, Sung Hwan;Lee, Myung Jik;Lee, Jong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.16-25
    • /
    • 2021
  • Reliability of fatigue strength on Aircraft Composites(GFRP) Structures was assessed in this paper. Fatigue strength of GFRP was used through the existing fatigue test data with Monte Carlo method. The Sa-Nf curve of composites fatigue strength was assumed as normal distribution and reliability was analyzed using SSIT model. Fatigue stress was designed IAW ASTM F3114-15 with special safety factor of Ssf=1.2~2.0. Reliability was calculated by analytic method and FORM. Sensitivity for the effect of mean and standard deviation of fatigue strength as well as fatigue stability was evaluated. This result can be usefully applied to reliability and fatigue design for composite structures of light weight aircraft.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

Development of a Fatigue Analysis Software System (피로해석시스템 개발)

  • Choi, B.I.;Lee, H.J.;Han, S.W.;Kim, J.Y.;Hwang, K.H.;Kang, J.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.120-125
    • /
    • 2001
  • A general purpose fatigue analysis software to predict fatigue lives of mechanical components and structures was developed. This software has some characteristic features including functions of searching weak regions on the free surface in order to reduce computing time significantly, a database of fatigue properties for various materials. and an expert system which can assist any users to get more proper results. This software can be used in the environment consists of commercial finite element packages. Using the software developed fatigue analyses for a SAE keyhole specimen and an automobile knuckle were carried out. It was observed that the results were agree well with those from commercial packages.

  • PDF

Fatigue experiment of stud welded on steel plate for a new bridge deck system

  • Ahn, Jin-Hee;Kim, Sang-Hyo;Jeong, Youn-Ju
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.391-404
    • /
    • 2007
  • This paper presents push-out tests of stud shear connectors to examine their fatigue behavior for developing a new composite bridge deck system. The fifteen push-out specimens of D16 mm stud welded on 9 mm steel plate were fabricated according to Eurocode-4, and a series of fatigue endurance test and residual strength test were performed. Additionally, the stiffness and strength variations by cyclic loading were compared. The push-out test, when the stiffness reduction ratio of the specimens was 0.95 under cyclic load, resulted in the failure of the studs. The stiffness variation of the push-out specimens additionally showed that the application of cyclic loads reduced the residual strength. The fatigue strength of the shear connectors were compared with the design values specified in the Eurocode-4, ASSHTO LRFD and JSSC codes. The comparison result showed that the fatigue endurance of the specimens satisfies the design values of these codes.