• Title/Summary/Keyword: Fatigue system

Search Result 1,620, Processing Time 0.031 seconds

Comparison of Fatigue Damage Models of Spread Mooring Line for Floating Type Offshore Plant (부유식 해양플랜트 다점 계류라인의 피로손상모델 비교)

  • Park, Jun-Bum;Kim, Kookhyun;Kim, Kyung-Su;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.63-69
    • /
    • 2013
  • The mooring lines of a floating type offshore plant are known to show wide banded and bimodal responses. These phenomena come from a combination of low and high frequency random load components, which are derived from the drift-restoring motion characteristic and wind- sea, respectively. In this study, fatigue models were applied to predict the fatigue damage of mooring lines under those loads, and the result were compared. For this purpose, seven different fatigue damage prediction models were reviewed, including mathematical formula. A FPSO (floating, production, storage, and offloading) with a $4{\times}4$ spread catenary mooring system was selected as a numerical model, which was already installed at an offshore area of West Africa. Four load cases with different combinations of wave and wind spectra were considered, and the fatigue damage to each mooring line was estimated. The rain flow fatigue damage for the time process of the mooring tension response was compared with the results estimated by all the fatigue damage prediction models. The results showed that both Benasciutti-Tovo and JB models could most accurately predict wide banded bimodal fatigue damage to a mooring system.

A Behavior Analysis of HSR Concrete Slab Track under Variety of Rail Pad Static Stiffness on Fatigue Effect (피로효과를 고려한 레일패드의 정적스프링계수 변화에 따른 콘크리트 슬래브 제도의 거동분석)

  • Park, Yong-Gul;Kang, Kee-Dong;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.499-505
    • /
    • 2007
  • The major effective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect (hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete stab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration. The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

STRUCTURAL SAFTY EVALUATION OF COMPRESSOR DRIVING MOTOR SHAFT SYSTEM (컴프레서 구동용 전동기 축계의 구조 안전성 평가)

  • Jung, Kun-Hwa;Kwak, Ju-Ho;Kim, Byung-Joo;Lee, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1031-1036
    • /
    • 2007
  • Torsional vibration analysis is necessary at design stage to ensure the reliability of a system particularly when the driven machine is a reciprocating compressor. This paper contains the results of torsional vibration analysis and fatigue strength evaluation for 540 kW compressor driving motor. Torsional vibration analysis showed that the $2^{nd}$ torsional mode of the entire shaft system has the possibility of resonance with the $14^{th}$ order excitation of compressor and twin line frequency of motor at operating speed. Therefore, the analyses were required to ensure the structural reliability of the motor. The fatigue strength was evaluated for the shaft and inner fans using the results of forced vibration analysis. It is concluded that the motor has sufficient fatigue strength under normal operating condition.

  • PDF

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

Transient Effects of Calf Muscle Fatigue and Visual Control on Postural Balance During Single Leg Standing

  • Han, Jin-Tae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.3
    • /
    • pp.67-71
    • /
    • 2017
  • PURPOSE: Muscle fatigue is a cause to change proprioception. The purpose of this study was to investigate the effects of calf muscle fatigue and visual control on postural balance during single-legged standing in healthy adults. METHODS: Nineteen healthy adults (male) were participated in this study (mean age: 24.36 years; mean height: 171.32 cm; mean weight: 64.58 kg). The postural balance (sway length, sway area, sway velocity of COG displacement) was measured by Balance Trainer System (BT4) in before and after calf muscle fatigue feeling in single legged stance. In this study, repetitive single-legged heel rise test was used to induce fatigue of the calf muscle. Paired t- test was used to compare the postural balance between before and after calf muscle fatigue. Data of subjects were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Level of significance was set to .05. RESULTS: The sway length, sway area, sway velocity of COG (center of gravity) displacement after calf muscle fatigue feeling was significantly increased compared to before calf muscle fatigue feeling during single leg standing both eye open and close conditions (p<.05). CONCLUSION: This study suggested that calf muscle fatigue feeling has affected on postural balance when standing one leg both eye open and close conditions and postural control was disturbed by muscle fatigue and visual feedback in single leg standing.

Influence of Unilateral Muscle Fatigue in Knee and Ankle Joint on Balance and Gait in Healthy Adults

  • Lee, Na-Kyung;Kim, Young-Mi;Kim, Kyoung
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • Purpose: This study was to investigate the effects of unilateral muscle fatigue in knee and ankle joints on balance and gait in healthy adults. Methods: Exercise inducing muscle fatigue in the knee joint consisted of concentric and eccentric contraction of dominant knee extensors in healthy adults by using the Leg Extension Rehap exercise machine (HUR, Finland). Exercise inducing muscle fatigue in the ankle joint was composed of voluntary contractions and forced contractions of the dominant plantar flexors in healthy adults. Exercises to induce muscle fatigue in the knee and ankle joints were performed until the subject complained of fatigue or pain, the occurrence of muscle fatigue was confirmed by electromyography. We measured static and dynamic balance using the Good Balance system and gait performance by RS-scan. Results: Static and dynamic balance ability and spatial-temporal gait decreased significantly after muscle fatigue in knee and ankle joint. Conclusion: These results show that unilateral muscle fatigue of the lower extremities affected postural control and gait. Therefore, therapists and sport trainers should minimize the risks of fall and injuries related to unilateral muscle fatigue.

Evaluation of Mental Fatigue Using Vowel Formant Analysis (모음 포먼트 분석을 통한 정신적 피로 평가)

  • Ha, Wook Hyun;Park, Sung Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Mental fatigue is inevitable in the workplace. Since mental fatigue can lead to decreased efficiency and critical accidents, it is important to manage mental fatigue from the viewpoint of accident prevention. An experiment was performed to evaluate mental fatigue using the formant frequency analysis of human voices. The experimental task was to mentally add or subtract two one-digit numbers. After completing the tasks with four different levels of mental fatigue, subjects were asked to read Korean vowels and their voices were recorded. Five vowel sounds of "아", "어", "오", "우", and "이" from the voice recorded were then used to extract formant 1 frequency. Results of separate ANOVAs showed significant main effects of mental fatigue on formant 1 frequencies of all five vowels concerned. However, post-hoc comparisons revealed that formant 1 frequencies of "아" and "어" were most sensitive to mental fatigue level employed in this experiment. Formant 1 frequencies of "아" and "어" significantly decrease as the mental fatigue accumulates. The formant frequency extracted from human voice would be potentially applicable for detecting mental fatigue induced during industrial tasks.

How to Measure Alert Fatigue by Using Physiological Signals?

  • Chae, Jeonghyeun;Kang, Youngcheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.760-767
    • /
    • 2022
  • This paper introduces alert fatigue and presents methods to measure alert fatigue by using physiological signals. Alert fatigue is a phenomenon that which an individual is constantly exposed to frequent alarms and becomes desensitized to them. Blind spots are one leading cause of struck-by accidents, which is one most common causes of fatal accidents on construction sites. To reduce such accidents, construction equipment is equipped with an alarm system. However, the frequent alarm is inevitable due to the dynamic nature of construction sites and the situation can lead to alert fatigue. This paper introduces alert fatigue and proposes methods to use physiological signals such as electroencephalography, electrodermal activity, and event-related potential for the measurement of alert fatigue. Specifically, this paper presents how raw data from the physiological sensors measuring such signals can be processed to measure alert fatigue. By comparing the processed physiological data to behavioral data, validity of the measurement is tested. Using preliminary experimental results, this paper validates that physiological signals can be useful to measure alert fatigue. The findings of this study can contribute to investigating alert fatigue, which will lead to lowering the struck-by accidents caused by blind spots.

  • PDF

Fatigue Safe Life Evaluation of Rotating Swashplate of Helicopter Main Rotor Control System (헬리콥터 주로터 조종 시스템 회전형 스와시플레이트 피로 안전수명 평가)

  • Kim, Dong-Chul;Lee, Pan-Ho;Kang, Shin-Hyun;Choi, Young-Don;Kim, Tae-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.203-210
    • /
    • 2012
  • The main rotor control system is an important structural part of a helicopter that manages the thrust and control force of the helicopter. The main rotor control system consists of a swashplate assembly, scissor assembly, pitch rod assembly, guide, etc. The main rotor control system must endure various loads, such as the thrust and control force, and must meet the optimized fatigue safety life. The rotating swashplate is an important structure influenced by the pitch rod load and rotating scissor load. In this paper, the accuracy of a result about the rotating swashplate part of the main rotor control system is proven through comparison between fatigue test and FEM results. Based on this result, we estimate the lifetime and deduce the fatigue safe lifetime.

Development of Integrated Design System for Automotive Rubber Components (자동차 방진고무부품 통합설계시스템 개발)

  • Woo, Chang-Su;Kim, Wan-Doo;Park, Hyung-Sung;Shin, Wae-Gi
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2012
  • The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Recently, the design, analysis and evaluation technology was required to achieve the high quality, fidelity, reliability of rubber products. However, rubber manufacturing companies of our country have uesd the method of trial and error and experience in the process of a compound mixing, manufacturing and improvement of rubber properties. The objectives of this study are to establish the test methods of rubber material and to make the database of rubber material properties and to evaluate the performance of rubber components and to construct the prediction system of fatigue life. Fatigue lifetime prediction methodology of the rubber component was proposed by incorporating the finite element analysis and fatigue damage parameter from fatigue test.