• 제목/요약/키워드: Fatigue safety factor

검색결과 198건 처리시간 0.029초

선체구조용강의 용접방법에 따른 용접부의 피로균열전파특성 연구 (A Study on the Fatigue Crack Growth Characteristics of the Welded Part According to the Welding Method of Ship Structural Steel)

  • 박경동;기우태;이주영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.385-393
    • /
    • 2007
  • The strength evaluation of the most weakest junction part is required for the safety design of all structures. Most of all. in order to enhance the reliability and safety of the welding part. whose use is the highest, it is very important to establish the efficient structure manufacturing technology by studying and investigating the evaluation of fatigue strength in various environments. This study analyzed the relations of da/dN, and th according to the welding methods of SMAW, FCAW, and SAW. In the stage II. the value of stress intensity factor range was the highest in SMAW welding method of stress ration R=0.1, and appeared under the sequence of FCAW and SAW and as the completion section of stress intensity factor was low, threshold stress intensity factor was lowly formed in da/dN - The fatigue life of each welding method is sensitively worked in high stress ratio. judging from the fact that the width of life reduction increases in the high stress ratio zone compared to the width of life reduction in the low stress ratio zone. In the fatigue limit of welding methods before corrosion. the welding of SMAW and FCAW shows the same fatigue limit compared to Base metal, and SAW holds the lowest fatigue limit value.

수술실 간호사의 안전분위기와 피로 수준이 안전이행에 미치는 영향 (The Impact of Safety Climate and Fatigue on Safety Performance of Operating Room Nurses)

  • 최유은;김현영
    • 간호행정학회지
    • /
    • 제22권5호
    • /
    • pp.471-479
    • /
    • 2016
  • Purpose: This study was conducted to evaluate the level of safety climate, fatigue, and safety performance and to identify the impact of safety climate and fatigue on the safety performance of operating room nurses. Methods: The study design was a descriptive survey. Participants were 174 operating room nurses from two general hospitals and two university hospitals in S and D cities. Three structurally designed questionnaires were used to evaluate their safety climate, fatigue, and safety performance. Collected data were analyzed using descriptive analysis, t-tests, ANOVAs, Pearson correlation coefficient, and stepwise multiple regression. Results: Safety performance of operating room nurses had a mean of 3.26 on a 5-point scale. 'Current department career'(${\beta}=.17$, p=.006) and 'safety climate (work-unit contribution) (${\beta}=.63$, p<.001) accounted for 39% of the variance in operating room nurses' safety performance. Conclusion: Findings indicate that work-unit contribution towards safety climate is an important factor in increasing operating room nurses' safety performance. Therefore, it is essential to find motivational properties consistent with the characteristics of the operating room environment.

S35C강의 피로균열 발생 및 진전에 관한 연구 (The Research of Fatigue-Crack Initiation and Propagation for S35C Steel)

  • 진영준
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

Al 2024-T3재의 Crack Opening Point의 평가에 관한 연구 (A Study on Evaluation of Crack Opening Point in Al 2024-T3 Material)

  • 최병기;장경천
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.16-20
    • /
    • 2004
  • This paper aims to analyze fatigue fracture mechnisms with high strength aluminum alloys, which are widely used in vehicles or airplanes to prevent accidents. Usefulness of the crack opening point was proposed by using an effective stress intensity facor when evaluating the fatigue crack propagaion rate. Therefore an exact crack opening ratio can be measured for a more exact fatigue crack propagation rate. It is found that the fatigue crack propagation rate was valid within the range of experimentation as an effective stress intensity factor. Summarizing the results are as follows in this paper ; (1) It is found that the value of the crack opening ratio is constant at the rear of the specimen, U'=0.25 at the crack mouth and U'=0.45 at the crack tip, respectively regardless of the stress ratio. (2) The crack opening ratio is different according to measurement locations. The crack opening ratio value was measured at the crack mouth by a clip gage or measured behind the specimen by a strain gage. It is found that the crack opening ratio value is more accurate that any other measuring test for evaluating the crack propagation ratio test by effective stress intensity factor.

냉간 압연강판 십자형 점용접부의 피로강도 평가 (Fatigue Strength Evaluation of SPCC Cross-Tension Spot Weld Joints)

  • 김호경;최덕호;양경탁
    • 한국안전학회지
    • /
    • 제21권5호
    • /
    • pp.17-21
    • /
    • 2006
  • In this study, SPCC cross-tension type specimens produced under various spot welding conditions were tensile and fatigue tested. Decrease of 2 kA in normal current condition of 10 kA caused a large amount of reduction in both static joining strength and fatigue life. And 2 kA increase resulted in increase of static joining strength and an increase in low cycle regime but a decrease in high cycle regime, revealing the fact that fatigue strength rather than static joining strength would be a major factor during design process in view of the body endurance. As a results of estimating the fatigue lifetimes of various types of spot weld specimens. equivalent stress intensity factor is the proper parameter for predicting the lifetimes of various types of specimens. which can be expressed as ${\Delta}K_{eq}(N/nm^{1.5})=11550N^{-0.36}_{f}$.

Simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads

  • Kim, Jong-Sung;Kim, Jun-Young
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2918-2927
    • /
    • 2020
  • This paper proposes a simplified elastic-plastic analysis procedure using the penalty factors presented in the Code Case N-779 for strain-based fatigue assessment of nuclear safety class 1 components under severe seismic loads such as safety shutdown earthquake and beyond design-basis earthquake. First, a simplified elastic-plastic analysis procedure for strain-based fatigue assessment of nuclear safety class 1 components under the severe seismic loads was proposed based on the analysis result for the simplified elastic-plastic analysis procedure in the Code Case N-779 and the stress categories corresponding to normal operation and seismic loads. Second, total strain amplitude was calculated directly by performing finite element cyclic elastic-plastic seismic analysis for a hot leg nozzle in pressurizer surge line subject to combined loading including deadweight, pressure, seismic inertia load, and seismic anchor motion, as well as was derived indirectly by applying the proposed analysis procedure to the finite element elastic stress analysis result for each load. Third, strain-based fatigue assessment was implemented by applying the strain-based fatigue acceptance criteria in the ASME B&PV Code, Sec. III, Subsec. NB, Article NB-3200 and by using the total strain amplitude values calculated. Last, the total strain amplitude and the fatigue assessment result corresponding to the simplified elastic-plastic analysis were compared with those using the finite element elastic-plastic seismic analysis results. As a result of the comparison, it was identified that the proposed analysis procedure can derive reasonable and conservative results.

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.

FATIGUE ANALYSIS OF A REACTOR PRESSURE VESSEL FOR SMART

  • Jhung, Myung-Jo
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.683-688
    • /
    • 2012
  • The structural integrity of mechanical components during several transients should be assured in the design stage. This requires a fatigue analysis including thermal and stress analyses. As an example, this study performs a fatigue analysis of the reactor pressure vessel of SMART during arbitrary transients. Using heat transfer coefficients determined based on the operating environments, a transient thermal analysis is performed and the results are applied to a finite element model along with the pressure to calculate the stresses. The total stress intensity range and cumulative fatigue usage factor are investigated to determine the adequacy of the design.

커넥팅 로드의 피로강도에 대한 신뢰성 해석 (Reliability Analysis in Fatigue Strength of Connecting Rod)

  • 김철수;이준형;김정규
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1651-1658
    • /
    • 2001
  • It is necessary to evaluate fatigue strength and reliability of the connecting rod which is core part in automotive engine to assure the high level of durability of automobile. For this purpose, the loading conditions in automotive engine is obtained by the dynamic analysis. Based on these results, the critical section was identified by the finite element analysis. The fatigue strength under constant amplitude was evaluated and the mean of the fatigue limit at R = -2.27 derived from the staircase method was 311.2MPa. And the failure probability( F$\sub$p/ ) derived from the strength-stress interference model is 0.0003% at the 99.99% confidence level and the mean factor of safety was 4.2.

페라이트-마르텐사이트 이상조직강의 피로파괴거동에 미치는 노치효과 (The Notch Effects on the Fatigue fracture Behaviour of Ferrite-Martensite Dual Phase Steel)

  • 도영민
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.46-53
    • /
    • 2003
  • For the tensile tests of the F.E.M., microvoids are created by the boundary separation process at the martensite boundary or neighborhood and at inclusions within the fracture. to grow to the ductile dimple fracture. For the case of the M.E.F., microvoids created at the discontinuities of the martensite phase which exists at the grain boundary of the primary ferrite are grown to coalescence with the cleavage cracks induced at the interior of the ferrite, which as a result show the discontinuous brittle fracture behavior. In spite of their similar tensile strengths, the fatigue limit and the notch sensitivity of the M. E.F. is superior to those of the F.E.M., The M.E.F. is much more insensitive to notch than F.E.M. from the stress concentration factor($\alpha$).