• Title/Summary/Keyword: Fatigue properties

Search Result 1,123, Processing Time 0.039 seconds

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Ferroelectric Properties of SBT Thin Films Deposited by RF Magnetron Sputering Method (RF 마그네트론 스퍼터링법에 의한 SBT 박막의 강유전체 특성)

  • 조춘남;김진사;최운식;박용필;김충혁
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.731-735
    • /
    • 2001
  • S $r_{0.89}$B $i_{2.4}$T $a_2$ $O_{9}$ (SBT) thin films are deposited on Pt-coated electrode(Pt/Ti $O_2$/ $SiO_2$/Si) using RF magnetron sputtering method. In the XRD pattern, the SBT thin films had (105) orientation. As annealing temperature was increased from $600^{\circ}C$ to 85$0^{\circ}C$, the intensities of peak were increased. In the SEM images, Bi-layered perovskite phase was crystallized above $650^{\circ}C$ and rod-like grains grew above 75$0^{\circ}C$. The maximum remanent polarization and the coercive electric field at annealing temperature of 75$0^{\circ}C$ are 11.60$\mu$C/$\textrm{cm}^2$ and 48kV/cm respectively. The dielectric constant and leakage current density at annealing temperature of 75$0^{\circ}C$ are 213 and 1.01x10$^{-8}$ A/$\textrm{cm}^2$, respectively. The fatigue characteristics of SBT thin filmsdid not change up to 10$^{10}$ switching cycles.s.s.

  • PDF

Ferroelectric Properties of PZT Thin Films by RF-Magnetron sputtering (RF 마그네트론 스퍼터링 법을 이용한 PZT 박막의 강유전 특성)

  • Park, Young;Joo, Pil-Yeoun;Yi, Ju-Sin;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.341-344
    • /
    • 1999
  • The effects of post annealing treatments of ferroelectrlclty in PZT(P $b_{1.05}$(Z $r_{0.52}$, $Ti_{0.48}$) $O_3$ thin film deposited on Pt/ $SiO_2$/Si substrate by RF-Magnetron sputtering methode was Investigated. Analyses by RTA(Rapid Thermal Annealing) treatments reveled that the crystallization process strongly depend on the healing temperature. The Perovskite structure with strong PZT (101) plan was obtained by RTA treatments at 75$0^{\circ}C$ With increasing RTA temperature of PZI thin films, the coercive field and remanent Polarization decreased, while saturation polarization( $P_{r}$) was decreased. P-E curves of Pt/PZT/Pt capacitor structures demonstrate typical hysteresiss loops. The measure values of $P_{r}$,. $E_{c}$ and dielectric constants by post annealed at 75$0^{\circ}C$ were 38 $\mu$C/$\textrm{cm}^2$ 35KV/cm and 974, respectively. Switching polarization versus fatigue characteristic showed 12% degradation up to 10$^{7}$ cycles.s.s.s.s.s.s.

  • PDF

Design and Construction of a High Temperature Creep Tester for Thin Film Specimens (박막시험편용 고온 크리프 시험기의 설계 및 제작)

  • Ko, Gyoung-Dek;Lee, Sang-Shin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.253-259
    • /
    • 2007
  • A new material tester has been developed to measure mechanical properties of thin film specimens at high temperature. It is useful for observing oxide film growth or local deformation on the surface, and for measuring creep strength. Main characteristics of the tester is as follows; First, high temperature is achieved by Joule heating generated by electricity passing through the specimen, which does not need to enclose the specimen by a furnace or a heating chamber. The exposed specimen enables one to observe the surface during the test. Because the overall size of the test rig is compact, the whole test rig can be placed in a chamber for environmental controlled tests. The loading device is from a level scales. Not only static load with fixed counter weight, but also variable load by moving counter weight controlled remotely can be applied for an ordinary creep test and creep-fatigue test, respectively. The detail of the construction, operation principle, and the specification are described. And also, an example of test result obtained using the creep tester is presented.

Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change (모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석)

  • Kim, Moon-Young;Yang, Sung-Ho;Park, Sang-Yeol;Kim, Sang-Hoon;Park, Hye-Sook;Won, Jong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

Design Sensitivity and Optimum Design of Monopile Support Structure in Offshore Wind Turbine (해상풍력발전기 모노파일 설계민감도해석 및 최적설계)

  • Lee, Ji-Hyun;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.78-87
    • /
    • 2014
  • Recently the offshore wind turbine development is requested to be installed off south-west coast and Jeju island in Korea. Reliable and robust support structures are required to meet the demand on the offshore wind turbine in harsh and rapidly varying environmental conditions. Monopile is the most preferred substructure in shallow water with long term experiences from the offshore gas and oil industries. This paper presents an optimum design of a monopile connection with grouted transition piece (TP) for the reliable and cost-effective design purposes. First, design loads are simulated for a 5 MW offshore wind turbine in site conditions off the southwest coast of Korea. Second, sensitivity analysis is performed to investigate the design sensitivity of geometry and material parameters of monopile connection based on the ultimate and fatigue capacities according to DNV standards. Next, optimization is conducted to minimize the total mass and resulted in 30% weight reduction and the optimum geometry and material properties of the monopile substructure of the fixed offshore wind turbine.

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

Strength and Deformation Characteristics of Steel Fiber Reinforced Columns (강섬유 보강 기둥의 강도 및 변형 특성)

  • 장극관;이현호;양승호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • As composite materials, the addition of steel fiber with concrete significant)y improves the engineering properties of structural members, notably shear strength and ductility. Flexural strength, fatigue strength, and the capacity to resist cracking are also enhanced. Especially the strengthening effect of steel fiber in shear is to prevent the brittle shear failure. In this study, shear-strengthening effect of steel fiber in RC short columns were investigated from the literature surveys and 10th specimem's member test results. From the test results, following conclusions can be made; the maximum enhancement of shear-strengthening effect can be achieved at about 1.5 % of steel fiber contents, shear strength and ductility capacity were improved remarkably in comparison to stiffness and energy dissipation capacity in steel fiber reinforced concrete.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.

Ferroelectric Properties of SBT Thin Film by RF Sputtering (RF 스퍼터링법에 의한 SBT박막의 강유전체 특성)

  • 김태원;오열기;김원종;조춘남;김진사;최운식;김충혁;심상흥;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.217-220
    • /
    • 2000
  • The SrBi$_2$Ta$_2$O$\_$9/(SBT) thin films are deposited on Pt-coated electrode(Pt/TiO$_2$/SiO$_2$/Si) using RF sputtering method. The SBT thin films deposited on substrate at 400-500[$^{\circ}C$]. SBT thin film deposited on Pt-coated electrodes have the cubic perovskite structure and polycrystalline state. With increasing annealing temperature from 600[$^{\circ}C$] to 850[$^{\circ}C$], flourite phase was crystallized to 650[。 and Bi-layered perovskite phase was crystallize ed above 700[$^{\circ}C$]. The maximum remnant polarization and the coercive electric field is 11.73[${\mu}$C/$\textrm{cm}^2$], 85[kV/cm] respectively at annealing temperature of 750[$^{\circ}C$]. The fatigue characteristics of SBT thin films deposited on Pt/TiO$_2$/SiO$_2$/Si substrate did not change up to 10$\^$10/ switching cycles.

  • PDF