• 제목/요약/키워드: Fatigue load history

검색결과 109건 처리시간 0.019초

자동차용 직선화 배기시스템의 피로내구 해석 및 평가 (Fatigue Durability Analysis and Evaluation for Straighted Type Exhaust System of Automobile)

  • 박세종;서호철
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.147-152
    • /
    • 2005
  • The exhaust system of automobile is faced with random or spectrum types of fatigue loads during usage life and so needs to be closely estimated for quality and performance to have enough certainty on design endurance lift during preliminary design process. Structural operation conditions, operation load history, property of material and manufacturing process etc. should be considered by performing experiment approach. Using the software program for predicting fatigue life quickly and exactly in preliminary design stage saves plenty of time and cost generated by fatigue tests. In this paper, fatigue life prediction was performed on the basis of fatigue analysis using MSC/FATIGUE and load data from field test and the life of development items was estimated and compared through the results.

페달의 내구성에 대한 구조 해석 (Structural Analysis on Durability of Pedal)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.88-95
    • /
    • 2011
  • In this study, the deformation, stress, vibration, fatigue life and the probability of damage are analyzed at the pedal applied by the force of 300N. The maximum stress at the lower of pedal is shown as 20.801MPa. And the maximum displacement is 0.85mm at the maximum response frequency as 3800Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{5}MPa$ and the amplitude stress of 0 to $10^{5}MPa$, the possibility of maximum damage becomes 0.6%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively improved with the design of pedal by investigating durability against its damage.

전방 차축의 구조해석에 관한 연구 (Study on Structural Analysis of Front Axle)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.65-71
    • /
    • 2011
  • This study analyzes about front axle through the analyses of stress, fatigue and vibration. Maximum equivalent stress is shown with the frequency of 60Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-2{\times}10^5MPa$ and the amplitude stress of 0 to $-2{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of front axle by investigating prevention and durability against its damage.

자동차 엔진 텐션베어링에 대한 구조해석 (Structural Analysis on Tension Bearing of Automotive Engine)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.21-28
    • /
    • 2012
  • This study analyzes about automotive engine tension bearing through the structural analyses of fatigue and vibration. Maximum equivalent stress is shown at the lower of tensioner. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-10^{6}MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of tension bearing by investigating prevention and durability against its damage.

회전력을 받는 플라이휠의 구조해석에 관한 연구 (Study on Structural Analysis of Flywheel under Rotary Power)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권2호
    • /
    • pp.137-143
    • /
    • 2012
  • This study analyzes flywheel through the analyses of stress, fatigue and vibration. Maximum equivalent stress is 15.271MPa at the mid round shape and maximum deformation is 0.02264mm at the outer teeth. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of -$10^4$MPa and the amplitude stress of 1000 to 2900MPa, the possibility of maximum damage becomes 30%. This stress state can be 20 times greater than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The range of natural frequencies becomes 200 to 820Hz and the values of these deformations are not more than 10mm. The structural result of this study can be effectively utilized with the design of flywheel by investigating prevention and durability against its damage.

불도저의 구조해석에 의한 내구성 연구 (Study on Durability by Structural Analysis of Bulldozer)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.239-244
    • /
    • 2011
  • This study analyzes the behaviors on stress, fatigue and vibration about bulldozer in operation. Maximum equivalent stress is shown with the frequency of 100 Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to -105MPa and the amplitude stress of 0 to $1.617{\times}105MPa$, the possibility of maximum damage becomes 3.23%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of bulldozer by investigating prevention and durability against its damage.

불규칙 피로 하중을 받는 자전거 프레임에 대한 연구 (Study on Bike Frame due to Nonuniform Fatigue Loads)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.133-140
    • /
    • 2012
  • In this study, 3 kinds of models about bike frame are simulated with static structural analysis, And fatigue life, damage and durability according to fatigue load are analyzed. A bike frame model with diamond type is compared with another model on the reinforced support with its type. In case of the reinforced support type, maximum equivalent stress or total deformation is shown with 10% or 20% more than the diamond type respectively. At both types of models, the trends of fatigue life and damage at both types are same. 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable among the cases of nonuniform fatigue loads. In case of 'Sample history' with the average stress of 0 to -1MPa and the amplitude stress of 0 to 1MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. In case of the reinforced support type, fatigue life becomes shorter and damage probability becomes larger at the right side installed with support than diamond type. The structural result of this study can be effectively utilized with the design on bike frame by investigating prevention and durability against its damage.

형상이 다른 브레이크 패드의 구조 및 피로해석을 통한 내구성 연구 (Durability Study through Structural and Fatigue Analyses of Brake Pads with Different Configurations)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.128-133
    • /
    • 2014
  • In this study, Two kinds of pad models with different configurations as the part of brake system are investigated by structural and fatigue analyses. As the maximum equivalent stress of model 2 becomes higher to the extent of 60% than that of model 1, model 2 can endure more load than model 1. In cases of two kinds of models, the maximum fatigue life at 'Sample history' becomes longer 60 times than 'SAE bracket history' and this life in case of 'SAE transmission' becomes longer 3.5 times than the case of 'SAE bracket history'. Maximum fatigue damages in cases of 'SAE bracket history', 'SAE transmission' and 'Sample history' at model 1 become higher than model 2. Model 2 is thought to have more fatigue durability than model 1. These study results can be effectively utilized with the design of brake pad by anticipating and investigating prevention and durability against its fatigue damage.

불규칙 하중을 받는 휠에서의 피로 파손 해석 (Analysis of Fatigue Damage at Wheel under Variable Load)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.753-759
    • /
    • 2010
  • The variable fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by Ansys program. These results are successfully applied to the practical wheel to predict the prevention of fracture and the endurance. The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rain flow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainbow and damage matrices illustrate the possible effects of infinite life. The safety and stability of wheel and the other practical structures according to the variable load can be estimated by using the results of this study.

어퍼암의 구조적 안전성 해석에 대한 연구 (Study on Structural Safety Analysis of Upper Arm)

  • 조재웅;한문식
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.