• Title/Summary/Keyword: Fatigue frequency

Search Result 840, Processing Time 0.047 seconds

Strength and Fatigue Analysis of Universal Joint (유니버설조인트의 강도 및 피로 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2011
  • Chassis part in automotive body is affected by fatigue load at driving on the ground. Universal joint on this part is influenced extremely by the fatigue load. Fatigue life, damage and natural frequency are analyzed at universal joint under nonuniform fatigue load. The york part at universal joint is shown with the maximum equivalent stress and displacement of 60.755 MPa and 0.21086 mm as strength analysis. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and 'Sine Wave'. The damage at loading life of 'SAE transmission' is the least among 3 types. The frequency of damage in case of 'Sine Wave' is 0.7 with the least among 3 fatigue loading life types but this case brings the most possible damage as 80% at the average stress of 0. Natural vibration at this model is analyzed with the orders of 1'st to 5'th and maximum frequency is shown as 701.73 Hz at 5'th order. As the result of this study is applied by the universal joint on chassis part, the prevention on fatigue damage in automotive body and its durability are predicted.

FATIGUE ANALYSIS OF ELECTROMYOGRAPHIC SIGNAL BASED ON STATIONARY WAVELET TRANSFORM

  • Lee, Young Seock;Lee, Jin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.143-152
    • /
    • 2000
  • As muscular contraction is sustained, the Fourier spectrum of the myoelectric signal is shifted toward the lower frequency. This spectral density is associated with muscle fatigue. This paper describes a quantitative measurement method that performs the measurement of localized muscle fatigue by tracking changes of median frequency based on stationary wavelet transform. Applying to the human masseter muscle, the proposed method offers the much information for muscle fatigue, comparing with the conventional FFT-based method for muscle fatigue measurement.

  • PDF

Fatigue Life Evaluation in Frequency Domain of aircraft Equipment Exposed to Random Vibration (무작위 진동에 노출된 항공기 탑재 장비의 주파수영역 피로수명 평가)

  • Jung, Hyun Su;Kim, Ki Seung;Kim, Jun Su;Lee, Seong Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.627-638
    • /
    • 2017
  • Expecting fatigue life of mounted radar in aircraft is very important when designing, because the mounted radar in aircraft is exposed to long-term external random vibration. Among the methods of predicting the fatigue life, Fatigue analysis method in frequency domain has continuously been proposed in this field. In this paper, four fatigue analysis methods in frequency domain, which are widely used, have been selected and compared with the results for Specimen fatigue test. As a result, Dirlik and Benascicutti-Tovo methods have been matched better with fatigue analysis in time domain than the method in frequency method through the comparison between the fatigue analysis method in time domain and the method in frequency domain by conducting the specimen fatigue test with strain gage. Based on the results of the specimen fatigue test, We have conducted fatigue analysis of mounted radar in aircraft with Dirlik and Benasciutti-Tovo methods in the finite element model, and confirmed that the required life was satisfying.

A Study on Low Frequency Band Selection as a Fatigue Parameter in Surface EMG during Isotonic Exercise of Biceps Brachii Muscle (상완이두근의 등장성 운동시 근피로인자로서 표면근전도의 저주파수대역 선정에 관한 연구)

  • Lee, Sang-Sik;Lee, Ki-Young
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.285-289
    • /
    • 2011
  • Muscle fatigue is characterized as a progressive increase in discomfort arising from the active muscle at moderate load levels are maintained. The median frequency is the most commonly used as a parameter to describe muscle fatigue. However, the estimate of the median frequency is difficult to indicate muscle fatigue because of its high standard deviation and instability. This paper investigates the power changes of the appropriate low frequency band as a fatigue parameter in EMG during isotonic exercise. To select the appropriate band, linear regression lines are employed to calculate the slopes and the coefficient of determination. Three females and seven males volunteered to participate in surface EMG recordings placed on the biceps brachii and each recording experiment continued until their exhaustion. The results of experiment shows that the power changes of the selected low frequency band (15~45 Hz) have linear slopes and high determinant coefficients. Therefore, this fatiguing parameter using the power changes of the low frequency band is valid to measure the state of muscular fatigue.

Evaluation of Mental Fatigue Using Vowel Formant Analysis (모음 포먼트 분석을 통한 정신적 피로 평가)

  • Ha, Wook Hyun;Park, Sung Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Mental fatigue is inevitable in the workplace. Since mental fatigue can lead to decreased efficiency and critical accidents, it is important to manage mental fatigue from the viewpoint of accident prevention. An experiment was performed to evaluate mental fatigue using the formant frequency analysis of human voices. The experimental task was to mentally add or subtract two one-digit numbers. After completing the tasks with four different levels of mental fatigue, subjects were asked to read Korean vowels and their voices were recorded. Five vowel sounds of "아", "어", "오", "우", and "이" from the voice recorded were then used to extract formant 1 frequency. Results of separate ANOVAs showed significant main effects of mental fatigue on formant 1 frequencies of all five vowels concerned. However, post-hoc comparisons revealed that formant 1 frequencies of "아" and "어" were most sensitive to mental fatigue level employed in this experiment. Formant 1 frequencies of "아" and "어" significantly decrease as the mental fatigue accumulates. The formant frequency extracted from human voice would be potentially applicable for detecting mental fatigue induced during industrial tasks.

Fatigue Crack Propagation of Super Duplex Stainless Steel and Time-Frequency Analysis of Acoustic Emission (수퍼 2상 스테인리스강의 피로균열 진전특성과 음향방출신호의 시간-주파수 해석)

  • Lee, Sang-Kee;Do, Jae-Yoon;Nam, Ki-Woo;Kang, Chang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.73-78
    • /
    • 2000
  • On this study, the fatigue crack propagation of super duplex stainless steel is investigated in conditions of various volume fraction of austenite phase by changing heat treatment temperature. And we analysed acoustic emission signals during the fatigue test by time-frequency analysis methods. As the temperature of heat treatment increased, volume fraction of austenite decreased and coarse grain was obtained. The specimen heat treated at $1200^{\circ}C$ had longer fatigue life and slower rate of crack growth. As a result of time-frequency analyze of acoustic emission signals during fatigue test, main frequency was $200{\sim}300kHz$ having no correlation with heat treatment and crack length, and 500kHz was obtained by dimple and separate of inclusion

  • PDF

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적층보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.1-4
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue lift of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the $90^{\circ}$-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminate. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[\textrm{90}_{2}\textrm{0}_{2}]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra (광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구)

  • Park, Jun-Bum;Kang, Chan-Hoe;Kim, Kyung-Su;Choung, Joon-Mo;Yoo, Chang-Hyuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.

Formant Frequency as a Measure of Physical Fatigue

  • Ha, Wook Hyun;Kim, Hong Tae;Park, Sung Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.139-144
    • /
    • 2013
  • Objective: The current study investigated a non-obtrusive measure for detecting physical fatigue based on the analysis of formant frequencies of human voice. Background: Fatigue has been considered as a main cause in industrial and traffic accidents. Therefore, it is critical to detect worker's fatigue for accident prevention. Method: After running exercises on a treadmill, participants were instructed to read a sentence and their voices were recorded under four different physical fatigue levels. Korean vowels of "아", "어", "오", "우", and "이" from the voice recorded were then used to collect formant 1 frequencies. Results: Results of separate ANOVAs showed a significant main effect of physical fatigue on formant 1 frequency of "아", "어", and "이". Furthermore, post-hoc comparisons revealed that formant 1 frequency of "아" was most sensitive to physical fatigue level employed in this experiment. Conclusion: Formant 1 frequencies of some vowels significantly decrease as the physical fatigue level increases. Application: Potential application of this study includes the development of a measure of physical fatigue state that is free from sensor attachment and requires little preparation.

The Study of Muscle Fatigue Index Searching in terms of Median Frequency Analysis of EMG Signals during Isotonic Exercise (등장성운동 시 근전도 신호의 중앙주파수 분석을 통한 근피로지수 검출에 관한 연구)

  • 홍수용;이성호;윤형로;조상현
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • Studies of muscle fatigue have mostly been checked under isometric exercise. However EMG signals from isotonic exercise generate uncontrollable noise, so there were difficulties in gathering reliable median frequency and muscle fatigue index if frequency analysis was equally applied in isometric exercise. This study tried to compare the differences of muscle fatigue determinant variables in terms of median frequency searching methods of EMG signal, which was estimated in isotonic exercise. To accomplish this, we determined median frequency by using different FFT intervals and overlapping ration of consecutive FFT sections under the same EMG signal, and then searched for a linear regression line, and compared initial median frequency, slope, and muscle fatigue index which were variables under the linear regression line. In result of comparison, initial median frequency was more elevated as FFT exercise interval became larger. The slope of the linear regression line showed distinguishable decreasing tendency as FFT intervals were larger and overlapping sections were smaller. Significant tendency of muscle fatigue index in FFT interval was shown by high muscle fatigue index in specific FFT intervals.