• Title/Summary/Keyword: Fatigue cyclic loading

Search Result 261, Processing Time 0.028 seconds

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

Effects of Temperature Amplitude and Loading Frequency on Alternating Current - Induced Damage in Cu Thin Films

  • Park Yeung-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.135-140
    • /
    • 2005
  • Although it was recently observed that severe fatigue damage was formed in Al or Cu interconnects due to the cyclic temperatures generated by Joule heating of the metal lines by the passage of alternating currents (AC), AC loading frequency effect on the damage evolution characteristics are not known so far. This work focused on the effect of AC loading frequency (100 Hz vs. 10 kHz) on the thermo-mechanical fatigue characteristics by using polycrystalline sputtered Cu lines with temperature cycles with amplitudes from 100 to $300^{\circ}C$. It was consistently observed that higher loading frequency accelerated damaged grain growth and led to earlier failure irrespective of Cu grain sizes. The frequency effect is believed to result from differences in the concentration of defects created by the deformation-induced motion of dislocations to the grain boundaries.

  • PDF

Cyclic fatigue resistance tests of Nickel-Titanium rotary files using simulated canal and weight loading conditions

  • Cho, Ok-In;Versluis, Antheunis;Cheung, Gary S.P.;Ha, Jung-Hong;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.31-35
    • /
    • 2013
  • Objectives: This study compared the cyclic fatigue resistance of nickel-titanium (NiTi) files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions. Materials and Methods: ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional) device prescribed curvature inside a simulated canal (C-test), the second new device exerted a constant load (L-test) whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF) was determined. The NCF were subjected to one-way ANOVA and Duncan's post-hoc test for each method. Spearman's rank correlation coefficient was computed to examine any association between methods. Results: Spearman's rank correlation coefficient (${\rho}$ = -0.905) showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files. Conclusions: The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.

Buckling behavior of cold-formed steel lipped channel beam-column members under monotonic and cyclic loadings

  • Yilmaz Yilmaz;Serhat Demir;Ferhan Ozturk
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.435-446
    • /
    • 2024
  • The use of cold-formed steel members is increasing day by day, especially in regions where earthquake effects are intensively experienced. Among cold-formed steel members (CFS), "channel" members are used more than other crosssectional members, especially in buildings or industrial structures. In recent years, several studies have been carried out on the axial load and flexural performance of these members under monotonic loading. In this study, CFS beam-column members were cyclically and monotonically loaded under combined axial load and biaxial bending moments, and their buckling behavior, load bearing capacity, stiffness, ductility, and energy absorption capacity were determined. For this purpose, monotonic and cyclic loading experiments were carried out on 30 CFS channel members at 15 different eccentricities. Then, material properties were determined by axial monotonic tensile and very low cycle fatigue tests for use in numerical studies. From the experimental results, the buckling modes, bearing capacities, ductility, stiffness, and energy absorption capacities of the members were obtained. The characteristics of the members were compared according to the stress state of the lips. According to the data obtained from the displacement transducer placed on the lips and on the back of the web, information about the buckling mode and curvature of the members was obtained. Finally, monotonic, and cyclic loading results were compared to determine the differences in the buckling behavior of the members.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Fatigue wear of polyamides with surface defects under different loading conditions

  • Abdelbary, Ahmed;Nasr, Mohamed N.A.
    • Advances in materials Research
    • /
    • v.5 no.3
    • /
    • pp.193-203
    • /
    • 2016
  • Compared to metal-to-metal tribology, polymer tribology presents further complexity as it is more prone to be influenced by operating conditions. Over the past two decades, progress in the field of wear of polymers has led to the establishment of more refined wear mechanisms. The current paper establishes the link between different load parameters and the wear rate of polymers, based on experimental investigations. A pin-on-plate reciprocating tribometer was used to examine the wear behaviour of polyamide sliding against a steel counterface, under constant and fluctuating loads, in dry conditions. In addition, the influence of controlled imperfections in the polymer surface upon its wear rate were examined, under cyclic and steady loading, in order to better understand surface fatigue wear of polymers. The imposed imperfections consisted of vertical artificial deep crack (slit) perpendicular or parallel to the direction of sliding. The study concludes with the followings findings; in general, wear of polymers shows a significant tendency to the type of applied load. Under cyclic loads, polymers show an increase in wear rate compared to those tested under static loads. Such increase was found to increase with the increase in cyclic load frequency. It is also demonstrated that surface cracks results in higher wear rates, particularly under cyclic loads.

Fatigue tests of damaged tubes under flexural loading

  • Ghazijahani, Tohid Ghanbari;Jiao, Hui;Holloway, Damien
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.223-236
    • /
    • 2015
  • Despite the proliferation of the industrial application of steel tubes, the effect of collision on the surface of steel tubes subject to cyclic loading has largely remained untouched. This paper studies the fatigue behavior of steel tubes which are impacted by an external object. A dent imperfection caused by a collision was modeled and fatigue tests were conducted using a MTS machine. Fatigue life as well as the failure modes were thoroughly discussed in a way that the fatigue life of the dented tubes with similar geometrical specifications at full-scale can be generalized.

A Study on the Flexural Damage of RC Beams Under Fatigue Loading Using A Cyclic Creep Characteristics (반복크리프 특성을 이용한 피로하중을 받는 RC 보의 휨손상 연구)

  • 오병환;김동욱;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • The creep strain of the compression zone of concrete beams subjected to cyclic loading should be a significant factor in increasing strain and deflections. An analytical model which is similar to a previous one is presented to predict the increase in cyclic creep strain and the damage using the properties of the constituent materials: concrete and steel. The analytical expressions are compared with our experimental data. The effect of concrete-creep is accounted by the term En, Icr,n, and Mcr,n. In this study, it is proved that cyclic creep exponents 'n' in Cyclic Creep Model, according to the parameters -strength, range of stress- have the various values. It is hoped that with the availability of more experimental data and better understanding of some of the complex behavior, the model could be further improved.

  • PDF

A Study on the fatigue deformation behavior of granitic stone in Korea (국내화강석재의 피로변형거동에 관한 연구)

  • 김재동;정윤영;장보안
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.144-156
    • /
    • 1996
  • The deformation behaviors under uniaxial compressive cyclic loading were investigated for fresh rocks and freeze-thaw cycled samples. The Pocheon granite which is one of the most popular building stone in Korea was selected for tests. 0.5 Hz and 50% of dynamic strength were used as test conditions for frequency and fatigue span, respectively. For freezethaw procedure, sample were frozen for 3 hours under the temperature of -2$0^{\circ}C$ and then followed 3 hours thawing under the temperature of +2$0^{\circ}C$. Twenty seven samples were used as untreated and seventy three for freeze-thaw samples. No failure occurred up to 15000 cycles at the stress level of 60% of dynamic strength, indicating that the lowest strees level for fatigue failure may be around 60% of dynamic strength. Permanent strain and damping capacity curves show that there were three stages when rock behaves like under creep. Young's moduli were increased and Possion's ratios were decreased with the increase of the number of cycles. Possion's ratios varied more rapidly than Young's moduli did with the increase of the number of cycles. This may represent that most microcracks developed by fatigue stress are parallel to the axis of loading. The deformation behavior of freeze-thaw cycled samples were almost the same as that of untreated samples. However, the result of freeze-thaw cycled samples showed lower regression constant, indicating that the physical durability of rock is much lowered because of cyclic temperature variation.

  • PDF

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.