• Title/Summary/Keyword: Fatigue crack propagation analysis

Search Result 168, Processing Time 0.025 seconds

Evaluation of Thermal Fatigue Lifetimes of Cast Iron Brake Disc Materials (제동 디스크용 주철의 물성 및 열피로 특성평가)

  • Goo, Byeong-Choon;Lim, Choong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.835-841
    • /
    • 2012
  • We measured the mechanical and thermal properties of four types of cast irons used for manufacturing the brake discs of railway vehicles. It was found that these properties could be controlled by varying the composition of Ni, Cr, and Mo. Thermal fatigue tests were carried out by using a thermal fatigue tester in which thermal cycles could be controlled. Thermal crack initiation and propagation were measured on cylindrical specimens. Finally, we simulated the thermal fatigue test procedure by finite element analysis and calculated the thermal fatigue lifetimes by Manson-Coffin's equation and the maximum principal strain. The estimated thermal fatigue lifetimes corresponded to the measured lifetimes when the total crack length was $40{\mu}m{\sim}1mm$.

Fatigue Life Prediction for Automotive Vibroisolating Rubber Component Using Tearing Energy (찢김에너지를 이용한 자동차용 방진 부품의 내구수명 예측)

  • Moon, Hyung-Il;Kim, Ho;Woo, Chang-Soo;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.100-106
    • /
    • 2012
  • Recently, the demand to acquire and improve durability performance has steadily risen in rubber components design. In design process of a rubber component, an analytical prediction is the most effective way to improve fatigue life. Existing methods of analytical estimation have mainly used an equation for fatigue life obtained from fatigue test data. However, such formula is rarely used due to costs and time required for fatigue testing, as well as randomness of rubber materials. In this paper, we describe fatigue life estimation of rubber component using only the results from a relatively simple tearing test. We estimated fatigue life of the Janggu type fatigue specimen and the automotive motor mount, and evaluated reliability of the proposed method by comparing the estimated values with actual test results.

Fracture Analysis of Implant Components using Scanning Electron Microscope : Part II - Implant Retaining Screw (임플란트 구성요소의 파절면에 관한 주사전자현미경적 연구 : Part II - 임플란트 유지나사)

  • Lim, Kwang-Gil;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.4
    • /
    • pp.373-388
    • /
    • 2010
  • Fracture causes serious problems in many instance of prosthetic failures. But it is hard to find the definite causes when fractures occur. Fractography encompasses the examination of fracture surfaces that contain features resulting from the interaction of the advancing crack with the microstructure of the material and the stress fields. All fractured specimens(implant retaining screw) retrieved from Gangneung-Wonju national university dental hospital for 3 years(from 2007 to 2009). After pretreatment of samples, the scanning electon microscope were used for surface examination and fracture analysis. In case of most of the fractured specimens, fracture took place by fatigue fracture and fractured surface represents fatigue striation. Fatigue striation indicate the progression of the crack front under cyclic loading, are characteristic of stage 2 crack growth. The site of crack initiation and stage 1 crack growth were not easily identified in any of the failure, presumably because of the complex microstructural features of the polycrystalline sample. In case of fractured by overload, dimpled or cleavage surface were observed. Using the interpretation of characteristic markings(ratchet mark, fatigue striation, dimple, cleavage et al) in fracture surfaces, failure events containing the crack origin, crack propagation, material deficiency could be understand. Using the interpretation of characteristic markings in fracture surfaces, cause and mechanism of fractures could be analyzed.

The Effect of Diaphragm inside Trough Rib on Fatigue Behavior of Trough Rib and Cross Beam Connections in Orthotropic Steel Decks (강바닥판 종리브와 횡리브 교차부의 피로거동에 대한 종리브내 다이아프램의 영향)

  • Choi, Dong Ho;Choi, Hang Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.239-250
    • /
    • 2000
  • This study investigates the mechanical behavior on trough rib to crossbeam joint in orthotropic steel plate decks, specially emphasizing on the effect of diaphragm inside trough rib on the fatigue behavior of slit by static and fatigue tests. In particular, the effects of diaphragm on in-plane stress and out-of-plane stress, stress concentration, propagation of fatigue cracks at the silt are studied. With the result of experiment and numerical analysis, we have estimated the fatigue strength using the nominal stress and hot-sport stress. The details with diaphragm have occurred about 50% stress reduction at trough rib part of trough rib to crossbeam joint than the detail without diaphragm, however, the lower parts of crossbeam have occurred much more stress. Initial crack size or slit have an considerable influence on the propagation of fatigue cracks due to V-notch. The fatigue strength category of the details without diaphragm has higher value than fatigue limit, whereas that of the details with diaphragm is estimated lower than fatigue limit.

  • PDF

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Crack Initiation Life Analysis in Notched Pipe Under Cyclic Bending Loads (굽힘피로 하중을 받는 배관의 피로균열 발생수명 예측)

  • Gwak, Sang-Rok;Lee, Jun-Seong;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1528-1534
    • /
    • 2001
  • In order to improve Leak-Be(ore-Break methodology, more precisely the crack growth evaluation, a round robin analysis was proposed by the CEA Saclay. The aim of this analysis was to evaluate the crack initiation life, penetration life and shape of through wall crack under cyclic bending loads. The proposed round robin analysis is composed of three main topic; fatigue crack initiation, crack propagation and crack penetration. This paper deals with the first topic, crack initiation in a notched pipe under four point bending. Both elastic-plastic finite element analysis and Neuber's rule were used to estimate the crack initiation life and the finite element models were verified by mesh-refinement, stress distribution and global deflection. In elastic-plastic finite element analysis, crack initiation life was determined by strain amplitude at the notch tip and strain-life curve of the material. In the analytical method, Neuber's rule with the consideration of load history and mean stress effect, was used for the life estimation. The effect of notch tip radius, strain range, cyclic hardening rule were examined in this study. When these results were compared with the experimental ones, the global deformation was a good agreement but the crack initiation cycle was higher than the experimental result.

Classification of Acoustic Emission Signals from Fatigue Crack Propagation in 2024 and 5052 Aluminum Alloys

  • Nam, Ki-Woo;Moon, Chang-Kwon
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.4 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • The characteristics of elastic waves emanating from crack initiation in 2024 and 5052 aluminum alloys subject to static and fatigue loading are investigated through laboratory experiments. The objective of the study is to determine difference in the properties of the signals generated from static and fatigue tests and also to examine if the sources of the waves could be identified from the temporal and spectral characteristics of the acoustic emission (AE) waveforms. The signals are recoded using non-resonant, flat, broadband transducers attached to the surface of the alloy specimens. The time dependence and power spectra of the signals recorded during the tests were examined and classified according to their special features. Three distinct types of signals were observed. The waveforms and their power spectra were found to be dependent on the material and the type of fracture associated with the signals. Analysis of the waveforms indicated that some signals could be attributed to plastic deformation associated with static tests. The potential application of the approach in health monitoring of aging aircraft structures using a network of surface mounted broadband sensors is discussed.

  • PDF

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis (형상인식법을 이용한 음향방출신호의 분류)

  • Joo, Y.S.;Jung, H.K.;Sim, C.M.;Lim, H.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF