• Title/Summary/Keyword: Fatigue crack life ratio

Search Result 126, Processing Time 0.026 seconds

Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy (Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향)

  • Kim, Gyeong-Hyeon;Lee, Byeong-Hun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Effect of Cd addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. With increasing Cd content, fatigue life and tensile strength were increased. It was found that the fatigue strength was 115MPa and the fatigue ratio was 0.31. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in the Cd-free Al-Cu- Mn cast alloy to 401MPa in the 0.15%Cd-containing alloy.

  • PDF

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

A Study on the Analysis of Cycle Ratio Using Fractal Dimension in Al 2024-T3 (프랙탈 차원을 이용항 AL 2024-T3 합금의 피로수명비 해석에 관한 연구)

  • 조석수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.29-36
    • /
    • 2000
  • Surface micro-crack grows along intergranular or transgranular region of crystal grains. But if it meets the barrier such as sessile dislocation and precipitates it loses straightness and deflects. Investigators had many difficulties in estimating fatigue life of smooth specimen because of the random distribution growth and coalescence of surface micro-cracks. The path of surface micro-crack has irregularity due to nonhomogeneous microstructure. Euclidian geometry can't quantify the shape of surface micro-crack but fractal geometry can. Therefore in this paper fractal dimension is measured at various stage of cycle ratio and estimated cycle ratio in 2024-T3 aluminium, alloy.

  • PDF

An Experimental Study on the Fatigue Characteristics of Silane-Treated Al/CFRP Composite Material (알루미늄의 Silane 표면처리에 따른 Al/CFRP 이종재의 피로특성)

  • 김만태;이경엽;지창헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.49-52
    • /
    • 2004
  • In this study, we investigated the fatigue characteristics of silane-treated aluminum/CFRP composite material. Three different specimens of cracked aluminum, cracked aluminum repaired with CFRP patch, and silane-treated aluminum repaired with CFRP patch were used in the fatigue tests. Load ratio and the frequency applied in the fatigue tests were 0 and 10 Hz, respectively. The results showed that the specimen repaired by composite patch showed three times more improved fatigue life than aluminum specimen. Furthermore, the silane-treated specimen repaired by composite patch showed four times more improved fatigue life than the non-treated specimen.

강용접부의 표면균열 성장거동에 관한 연구 1

  • 정세희;박재규;이종기
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1988
  • Generally, as the welded region of weld structures has the incomplete bead and welded deposit which are able to behave like the surface cracks occasinally, there is a high possibility that the fatigue fracture of the weld structures is due to the surface cracks on the wlded region. This study was done to investigate the effects of post weld heat treatment (PWHT) on the fatigue behaviors of the surface crack of the heat affected zone (HAZ) for the multi-pass welds under the repetitive pure bending moment. The obtained results are summarized as follows : 1. The crack grows to the depth direction initially as the number of cylces increase, the amount of crack length is increased for the surface dir3ction and cive versa for the depth direction. 2. The fatigue life is increased in a order of as weld, PWHT specimens and parent. 3. As the number of cycles increase, the crack length is increased to th surface direction. The increase of the depth length is blunted at the center of specimen thickness. 4. The fatigue crack growth of PWHT specimens to the surface direction is dependent upon the holding time and applied stress during PWHT. In order words, the crack growth rate decreases with the holding time and increases with the applied stress during PWHT. 5. As the crack grows, the aspect formed in the course of crack propagation approaches to semicircle for parent and ellipse with the largest semidiameter for PWHT ($1/4hr, 15kgf/mm^2$) 6. At depth direction, it is difficult to apply to the paris' equation because of the scattered data between the crack growth rate and the stress intensity factor range.

  • PDF

Interaction of Mechanics and Electrochemistry for Magnesium Alloys

  • Han, En-Hou;Wang, JianQiu;Ke, Wei
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.243-251
    • /
    • 2008
  • Magnesium alloys become popular research topic in last decade due to its light weight and relatively high strength-to-weight ratio in the energy aspiration age. Almost all structure materials are supposed to suspend stress. Magnesium is quite sensitive to corrosive environment, and also sensitive to environmental assisted cracking. However, so far we have the limited knowledge about the environmental sensitive cracking of magnesium alloys. The corrosion fatigue (CF) test was conducted. Many factors' effects, like grain size, texture, heat treatment, loading frequency, stress ratio, strain rate, chemical composition of environment, pH value, relative humidity were investigated. The results showed that all these factors had obvious influence on the crack initiation and propagation. Especially the dependence of CF life on pH value and frequency is quite different to the other traditional structural metallic materials. In order to interpret the results, the electrochemistry tests by polarization dynamic curve and electrochemical impedance spectroscopy were conducted with and without stress. The corrosion of magnesium alloys was also studied by in-situ observation in environmental scanning electron microscopy (ESEM). The corrosion rate changed with the wetting time during the initial corrosion process. The pre-charging of hydrogen caused crack initiated at $\beta$ phase, and with the increase of wetting time the crack propagated, implying that hydrogen produced by corrosion reaction participated in the process.

The Effect of Shot Peening on the Improvement of Fatigue Strength and Characteristics Fatigue Crack of the Aluminum Alloys (알루미늄 합금의 피로강도향상과 피로특성에 미치는 쇼트피닝 영향)

  • Jeon, Hyun-Bae;Lim, Man-Bae;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.256-261
    • /
    • 2007
  • The purpose of this study is to investigate the effect of shot peening on the fatigue strength and fatigue life of two kinds of aluminum alloys. The fatigue strength behavior of aluminum alloys were estimated by the stress ratio and shot velocities. The fatigue life and strength increased with increasing the test shot velocity. However, at the shot velocity range between 50m/s and 70m/s, the compressive residual stress phenomena were observed in test conditions of different shot velocity. The optimal shot velocity is acquired by considering the peak values of the compressive residual stress, dislocations, brittle striation, slip, and fisheye on the fracture surface of test specimen. It was observed from the SEM observation on the deformed specimen that the brittle striation, fisheye were showed in the intergranular fracture structure boundaries at the this velocities. Therefore, fatigue strength and fatigue life would be considered that shot velocity has close relationship with the compressive residual stress.

  • PDF

The Mixture Ratio Effect of Epoxy Resin, Curing Agent and Accelerator on the Fatigue Behavior of FRMLs (프리프레그 제작용 에폭시 수지.경화제.경화촉진제 혼합비 변화에 따른 FRMLs의 피로거동 특성)

  • Song, Sam-Hong;Kim, Cheol-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.592-601
    • /
    • 2001
  • Fiber reinforced metal laminates(FRMLs) are new types of hybrid materials. FRMLs consists of high strength metal(Al 5052-H34) and laminated fiber with structural adhesive bond. The mixture ratio effect of epoxy resin$.$curing agent$.$accelerator on the fatigue behavior of FRMLs was investigated in this study. The epoxy, diglycidylether of bisphenol A(DGEBA), was cured by methylene dianiline(MDA) with or without an accelerator(K-54). Eight different kinds of resin mixture ratios were selected for the test ; five kinds of FRMLs(1) and three others of FRMLs(2). The relationship between da/dN and ΔK with variation of resin mixture ratio was studied. FRMLs(1) and FRMLs(2) indicated approximately 2 times and 2.2 times more improved maximum bending strengths in comparison with those of Al 5052-H34. The resin mixture ratio <1:1> in case of FRMLs(1) indicated the maximum fatigue life, while the resin mixture ratio <1:1:0.2> in case of FRMLs(2) indicated the maximum fatigue life. As results, FRMLs(2) turned out to have more effective characteristics on the fatigue properties and the bending strength than those of FRMLs(1).

DETERMINATION OF FRACTURE TOUGHNESS BY UNIAXIAL TENSILE TEST

  • Oh, Hung-Kuk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.05a
    • /
    • pp.2-7
    • /
    • 1994
  • The dynamic fatigue life equation is applied to uniaxial tensile test. The resultant equations far the surface energy and fracture toughness are calculated with the data from the tensile test and compared with the ones from ASTM E399 test. During the crack propagation under model loading, the material of the crack tip undergoes the process of the elastic-plastic deformation in the uniaxial tensile test. The surface energy per unit area is proportional to the ratio of plastic and elastic elongations. The calculated fracture toughness of the metals are very well coincident to the ASTM E399's test results.

  • PDF

Fatigue Damage Evaluation of Cr-Mo Steel with In-Situ Ultrasonic Surface Wave Assessment (초음파 시험에 의한 배관용 Cr-Mo강의 피로손상의 비파괴평가)

  • Kim, Sang-Tae;Lee, Hei-Dong;Yang, Hyun-Tae;Choi, Young-Geun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2001
  • Although the ultrasonic method has been developed and used widely in the fields, it has been used only for measuring the defect size and thickness loss. In this study, the relationship between surface wave attenuation through micro-crack growth and variation of velocity under repeated cyclic loading has been investigated. The specimens are adopted from 2.25Cr-1Mo steel, which is used for power plant and pipeline system, and have dimensions of $200{\times}40{\times}4mm$. The results of ultrasonic test with a 5MHz transducer show that surface wave velocity gradually decreases from the point of 60% of fatigue life and the crack length of 2mm with the increasing fatigue cycles. From the results of this study, it is found that the technique using the ultrasonic velocity change is one of very useful methods to evaluate the fatigue life nondestructively.

  • PDF