• Title/Summary/Keyword: Fatigue crack growth rate

Search Result 437, Processing Time 0.026 seconds

A Study on High Temperature Low Cycle Fatigue Crack Growth Modelling by Neural Networks (신경회로망을 이용한 고온 저사이클 피로균열성장 모델링에 관한 연구)

  • Ju, Won-Sik;Jo, Seok-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.2752-2759
    • /
    • 1996
  • This paper presents crack growth analysis approach on the basis of neural networks, a branch of cognitive science to high temperature low cycle fatigue that shows strong nonlinearity in material behavior. As the number of data patterns on crack growth increase, pattern classification occurs well and two point representation scheme with gradient of crack growth curve simulates crack growth rate better than one point representation scheme. Optimal number of learning data exists and excessive number of learning data increases estimated mean error with remarkable learning time J-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

Fatigue Crack Growth Behavior of Powder Metallurgical Nickel-based Superalloy using DCPD Method at Elevated Temperature (DCPD법을 이용한 분말야금 니켈기 초내열합금의 고온 피로균열진전거동)

  • Na, Seonghyeon;Oh, Kwangkeun;Kim, Hongkyu;Kim, Donghoon;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2016
  • Powder metallurgy nickel based superalloy has been used in a high temperature part of turbine engine for airplane. The fatigue crack growth behavior was investigated using CT specimens for the materials at room temperature(R.T.), $600^{\circ}C$ and $700^{\circ}C$. The direct current potential drop(DCPD) method suggested by ASTM E647 was used to measure the crack length during fatigue crack growth at various stress ratios. The fatigue crack growth rate at R=0.5 was faster than that at R=0.1 for all temperature conditions and increased with the increase of stress ratio and temperature. Fractography was conducted for analysis of fracture mechanism.

Considerations of the Small-Crack Growth Law Based on COD (CRACK 개구변위(開口變位)에 기초한 미소피로(微小疲勞)크랙 전파법칙(法則)의 고찰(考察))

  • Kim, Min-Gun;Ji, Jueng-Keun
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.49-57
    • /
    • 1993
  • Bending fatigue tests were carried out on the specimenes with two different strength levels in order to investigate small crack growth rate. The main results obtained are as follows : (1) Small crack growth law, $da/dn=C{\sigma}_a{^n}a$ is useful several materials, but is not the rule applicable to all cases generally. (2) When da/dn in several specimens are equal, COD near the crack tip are also nearly equal. (3) Crack tip opening displacement(CTOD) is the main factor to control the small crack growth rate, and da/dn ${\propto}$ CTOD comes into being between the two. Accordingly, $da/dn=C({\sigma}_a{^2}/{\sigma}_s){^n}a^n$ shows the small crack growth rate being reflected crack closure phenomenon.

  • PDF

Prediction d Fatigue Growth Behavior of Short Cracks (짧은 균열의 피로성장거동예측)

  • 최용식;우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.47-53
    • /
    • 1993
  • The growth of short cracks can be well described in terms of the effective stress intensity factor range, which is calculated on the base of crack closure. The relation between the crack opening SIF and crack length is determined from the experimental results. The crack opening SIF of short cracks, Kop, can be predicted from the crack opening SIF at threshold of long crack, Kop.L. The growth rate of short cracks at notch root can be predicted from the crack opening SIF of short cracks, Kop, and the growth equation of long cracks in region II.

  • PDF

Fatigue Characteristics of Load-Carrying-Cruciform-Fillet-Welded-Joints According to Welding Methods (용접방법에 따른 하중전달 십자형 필렛 용접부의 피로특성)

  • 이용복;오병덕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, endurance limit and fatigue behavior of load carrying fillet welded cruciform joints depending on commonly used welding methods such as SMAW, SAW, MIG and FCAW are investigated. In respect of endurance limit SMAW specimen showes highest result, and then MIG, SAW, FCAW in descending order. However, SMAW specimen showes lowest crack growth rate and it followed by MIG, FCAW, SAW. By these results, it is needed to use SMAW or MIG welding methods for welding structures with small welding capacity and SAW or FCAW methods for large welding structures with respect to economic benefits and operation efficiency of welding. It was also shown fatigue crack growth rate was more influenced by the strenght of welding materials than the endurance limit of welding materials.

A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron (오스템퍼 회주철의 파괴강도 특성에 관한 연구)

  • 이하성;강동명;이영상
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel (G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향)

  • Kim, Jong Bum;Hwang, Soo-Kyung;Kim, Bum Joon;Lee, Jong Hoon;Park, Chang Gyu;Lee, Hyeong Yeon;Kim, Moon Ki;Lim, Byeong Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.271-279
    • /
    • 2012
  • 9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.

High-cycle fatigue characteristics of quasi-isotropic CFRP laminates

  • Hosoi, Atsushi;Arao, Yoshihiko;Karasawa, Hirokazu;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.151-166
    • /
    • 2007
  • High-cycle fatigue characteristics of quasi-isotropic carbon fiber reinforced plastic (CFRP) laminates [-45/0/45/90]s up to $10^8$ cycles were investigated. To assess the fatigue behavior in the high-cycle region, fatigue tests were conducted at a frequency of 100 Hz, since it is difficult to investigate the fatigue characteristics in high-cycle at 5 Hz. Then, the damage behavior of the specimen was observed with a microscope, soft X-ray photography and a 3D ultrasonic inspection system. In this study, to evaluate quantitative characteristics of both transverse crack propagation and delamination growth in the high-cycle region, the energy release rate associated with damage growth in the width direction was calculated. Transverse crack propagation and delamination growth in the width direction were evaluated based on a modified Paris law approach. The results revealed that transverse crack propagation delayed under the test conditions of less than ${\sigma}_{max}/{\sigma}_b$ = 0.3 of the applied stress level.

A study on the fatigue crack growth of mild steel weldments using flux cored wire $CO_2$ welding (국산 Flux-Cored Wire를 이용한 반자동용접이음새에서의 피로파괴 특성)

  • 엄동석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1989
  • The application of fracture mechanics is being increased gradually to assess the safety of welded structures containing crack. Fatigue crack propagation behavior and elastic-plastic fracture toughness J$_{IC}$ of home made flux cored wire(1.22mm) CO$_{2}$ weldments was discussed. Especially fatigue crack propagation test was carried out by .DELTA.K control instead of load control and elastic-plastic fracture toughness J$_{IC}$ was obtained by ASTM-R curve method on C.T.specimen in transverse direction of weldments. The results obtained are as follows; (1) Weld metal presented an almost complete similarity to base metal on fatigue crack propagation rate in transverse direction. (2) Weld metal was more than base metal on J$_{IC}$ value in transverse direction. (3) F.C.W. CO$_{2}$ weldments had an excellent characteristic of fatigue crack propagation rate and J$_{IC}$ in less than 50kg/mm$^{2}$ steel grade, this would result from that weld metal had good static strength.trength.

  • PDF