• Title/Summary/Keyword: Fatigue crack growth length

Search Result 155, Processing Time 0.027 seconds

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

Behavior of fatigue crack propagation for the deep non-through radial holed notch specimens (深孔 非貫通노치材의 疲勞크랙 傳播擧動에 관한 硏究)

  • 송삼홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1327-1334
    • /
    • 1988
  • In this study rotating bending fatigue tests have been carried out with the deep non-through radial holed notch specimens of low carbon steels(SM 22C). It is investigated that the behaviors of surface and interior fatigue crack propagation and the variations of the shape of the cracked surface on the magnitude of bending stresses. The Obtained results are summarized as follows. (1) The relations between [Crack length] and [Cycle ratio] are expressed by following eq. in the 0.1~0.6 range of N/ $N_{f}$ long[ crack length] = A + B [N/ $N_{f}$ ] In case of surface crack length, values of A and B are uniformed independent upon the magnitude of bending stress, but those are variable according to the magnitude of bending stress for interior crack length. (2) The following eq. is derived on the surface crack propagation rate, bending stress and surface crack length. (dl/dN)=(3.94*10$^{-12}$ ).sigma.$^{4.54}$l (3) Under small stress, interior crack propagation rate increase with the interior crack growth but it decrease for large stress. (4) The shape of cracked surface depends upon the magnitude of bending stress. Under small stress fatigue crack propagates as an semi-ellipse with semi-major axis of surface crack length with semi-major axis of interior crack length for large stress.s.

Fatigue crack growth properties of ceramic coated 1Cr-1Mo-0.25V steel (세라믹 코팅된 1Cr-1Mo-0.25V강의 피로균열성장 특성)

  • Seo, Chang-Min;Kim, Gyeong-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1674-1682
    • /
    • 1997
  • Fatigue tests were performed to investigate the effect of ceramic coatings as in TiN and TiCN on fatigue crack growth properties of ceramic coated 1Cr-1Mo-0.25V steel with different coating thickness in laboratory air conditions. The experimental results are described with respect to a Paris equation, da/dN=C(.DELTA.K)$^{m}$ , where the crack growth rate of coated specimens provided as similar growth rate as that of the uncoated specimen regardless of coating thickness. Furthermore, it was observed that the type of coating layer had virtually no effect on crack growth rate in the full region of stress intensity factor range. And it was also appeared that the final crack length of TiCN coated specimens was short compared to that of TiN coated, and the substrate specimens, in which it was inferred due to lowering the toughness of coated material from high hardness of TiCN coating layer itself.

Fatigue crack growth and remaining life estimation of AVLB components

  • Chen, Hung-Liang Roger;Choi, Jeong-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.651-674
    • /
    • 2006
  • The fatigue cracks initiate and propagate in the Armored Vehicle Launch Bridge (AVLB) components, especially like the splice doubler angle, splice plate, and bottom chord, due to the cyclic loading by repeated AVLB-launchings and tank-crossings. In this study, laboratory fatigue tests were conducted on six aluminum 2014-T6, four aluminum 7050-T76511, and four ASTM A36 steel compact-tension specimens to evaluate the crack growth behavior of the materials used for the components. The experimental results provide the relationship (Paris Law) between crack growth rate, da/dn, and stress intensity range, ${\Delta}K$, whose material dependent constants C and m can later be used in the life estimation of the components. Finite Element Method (FEM) was used to obtain the stress intensity factor, K, of the components with cracks. Because of the complexity of loading conditions and component geometry, several assumptions and simplifications are made in the FEM modeling. The FEM results, along with the results obtained from laboratory fatigue tests, are then utilized to estimate critical crack length and remaining life of the components.

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System. (전자스페클 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • Kim, Kyung-Su;Shin, Byung-Chun;Shim, Chun-Sik;Park, Jin-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-144
    • /
    • 2002
  • In this paper, the plastic zone size ahead of the crack tip of DENT specimen and the crack growth length under cyclic loading were measured by ESPI system. These results of the plastic zone size measured by ESPI system were compared with the plastic zone size proposed by Irwin. The results of tile crack growth length measured by it were also compared with them measured by the image analysis system. It is confirmed that it is possible to measure the plastic zone and crack growth length.

  • PDF

A Study on the Measurement of Elastic-Plastic Zone at the Crack Tip under Cyclic Loading using ESPI System (전자스패클패턴 간섭시스템을 이용한 피로하중을 받는 균열선단에서 탄소성 영역 측정에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.13-18
    • /
    • 2002
  • The magnitude of the plastic zone around the crack tip of DENT(Double Edge Notched Tension) specimen and the crack growth length under cyclic loading were measured by ESPI(Electronic Speckle Pattern Interferometry) system. The measured magnitude of plastic zone was compared with the equations proposed by Irwin and calculated by a nonlinear static method of MSC/NASTRAN. The measured crack growth length by ESPI system was also compared with the obtained data by the image analysis system. From the study, it is confirmed that the plastic zone and crack growth length can be measured accurately with the high-tech equipment.

A Study on Plastic Zone at the Crack Tip under Cyclic Loading by FEM (유한요소법을 이용한 피로하중을 받는 균열선단의 소성영역크기에 대한 연구)

  • Kim, Kyung-Su;Shim, Chun-Sik;Lee, Wook-Jae;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.151-154
    • /
    • 2002
  • In this paper, the effect of the crack growth length on the plastic zone size at the crack tip and the crack growth lives of the DENT specimen under constant amplitude cyclic loading were studied. The plastic zone size was calculated by nonlinear static method in commercial finite element analysis program, MSC/NASTRAN and the crack growth lives were also calculated by using compliance function considering geometric shape in MSC/FATIGUE. The calculated plastic zone size increased proportional to the crack length. And comparison of calculated plastic zone size and crack growth lives with the experimental results shows a good agreement.

  • PDF

Finite Element Analysis of Stage II Crack Growth and Branching in Fretting Fatigue (프레팅 피로에서 2단계 균열성장과 분지 유한요소해석)

  • Jung, Hyun Su;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1137-1143
    • /
    • 2015
  • The stage II fretting fatigue crack growth and branching, i.e., the process of fretting fatigue crack growth starting in an inclined direction and then changing to the normal direction, is analyzed using the finite element method. The fretting fatigue experiment data of A7075-T6 are used in the analysis. The applicability of maximum tangential stress intensity factor, maximum tangential stress intensity factor range, and maximum crack growth rate as the crack growth direction criteria is examined. It is revealed that the stage II crack growth before and after the branching cannot be simulated with a single criterion, but can be done when different criteria are applied to the two stages of crack growth. Moreover, a method to determine the crack length at which the branching occurs is proposed.

A Study on Parameters Affected the Fatigue Crack Growth in Steel Structure Members( II ) -The Effect of Surface Residual Stress for Crack Closure- (강구조 부재의 피로균열성장에 미치는 제인자에 관한 연구( II ) -표면잔류응력이 균열닫힘에 미치는 영향-)

  • Choi, Young Jae;Kyung, Kab Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.3-11
    • /
    • 1996
  • To investigate the effect of fatigue crack growth due to the surface residual stress, it is measured the residual stress distribution by x-ray diffraction at the crack tip each constant crack growth in the notch specimens, and quantitively assessed the effect of crack closure caused to the distribution of compressive stress at the crack tip from evaluating crack openning stress using the finite element analysis. It is concluded that the degree of the residual stress distribution at the crack tip is decreased with increasing the crack length. From the fact that it is similar to the crack openning stress ratio, it is found that the compressive residual stress distribution and size is related to the crack closure effect and surface residual stress field with propagating crack in the notch specimens depends on the stress intensity factor range at the crack tip.

  • PDF

Prediction d Fatigue Growth Behavior of Short Cracks (짧은 균열의 피로성장거동예측)

  • 최용식;우흥식;한지원
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.47-53
    • /
    • 1993
  • The growth of short cracks can be well described in terms of the effective stress intensity factor range, which is calculated on the base of crack closure. The relation between the crack opening SIF and crack length is determined from the experimental results. The crack opening SIF of short cracks, Kop, can be predicted from the crack opening SIF at threshold of long crack, Kop.L. The growth rate of short cracks at notch root can be predicted from the crack opening SIF of short cracks, Kop, and the growth equation of long cracks in region II.

  • PDF