• Title/Summary/Keyword: Fatigue behavior

Search Result 1,558, Processing Time 0.025 seconds

Fatigue Crack Growth Behavior of a Magnesium-Based Composite (마그네슘 금속복합재의 피로균열거동해석)

  • Kim, Doo Hwan;Park, Yong Gul;Kim, Sung Hoon;Han, Suk Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.515-521
    • /
    • 1997
  • The effects of heat treatment and fiber orientation on tensile strength and fatigue behavior were studied in a continuously reinforced. magnesium-based composite Following an earlier TEM investigation, specimens were thermally aged to modified the interfacial zone between the alumina fibers and the magnesium alloy matrix. From the tensile experimental results, the ultimate tensile strength of the aged specimens were lower than that of the as-fabricated due to weak fiber-matrix interfacial strength with chemical reaction during the thermal processing. The fatigue crack growth experiments were conducted with specimens having the fiber orientation normal to the crack growth direction (longitudinal) and also specimens with the fibers oriented parallel to the crack growth direction(transverse). A comparison of the fatigue crack growth behavior indicates that aged longitudinal specimens are more resistant to fatigue crack growth the as-fabricated longitudinal specimens. Conversely, as-fabricated transverse specimens are more resistant to fatigue crack growth than aged transverse specimens.

  • PDF

Study on farm work environment and physical load in Korea - Focusing on health survey, living behavior, cumulative fatigue symptoms by crops - (한국의 농작업환경과 인체부담에 관한 연구(II) -작목별 건강조사도, 농작업자 생활행동조사도, 축적적 피로증후군을 중심으로 -)

  • Choi, Jung-Hwa;Jung, Sung-Tae;Seol, Hyang
    • Korean Journal of Rural Living Science
    • /
    • v.9 no.2
    • /
    • pp.43-50
    • /
    • 1998
  • To obtain basic data for efficient health plan, we investigated the condition of farmers' health, living behavior, working environment, and cumulative fatigue symptoms by crops (greenhouse melon, rice and red pepper, stock farming, pear, grapes, dropwort, sweet potato, potato, radish. cabbage). The results are as follows; (1) The condition of farmers health : Among them, cabbage cultivators were in bad health concerning cardiovascular system, musculo-skeletal system, and skin condition. (2) Living behavior : $\circled1$ Radish cultivators were in best of their physical condition. $\circled2$ Rice and red pepper cultivators were taking a regular recess as compared with dropwort cultivators. $\circled3$ On concerning bathe, sleeping, and clothes, stock farmers were in relatively bad condition. (3) Working environment : cabbage, greenhouse melon, and dropwort cultivators had relatively Poor working environment. (4) Cumulative fatigue symptoms : $\circled1$ Dropwort cultivators were in the worst of their condition concerning loss of their energy, physical condition. decline of will to labor, sense of unease, and low spirits. $\circled2$ On concerning general fatigue, dropwort, sweet potato, and cabbage cultivator were in bad condition.

  • PDF

A Study on the Shear Fatigue Analysis Model of Reinforced Concrete Beams (철근 콘크리트 보의 전단피로해석 모델 연구)

  • 오병환;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.389-392
    • /
    • 1999
  • Fatigue is a process of progressive permanent internal structural change in a material subjected to repeitive stresses. These change may be damaging and result in progressive growth of cracks and complete fracture if the stress repetitins are sufficiently large. For structural members subjected to cyclic loads, the continuous and irrecoverable damage processes are taking place. These processes are referred as the cumulative damage processes due to fatigue loading. Moreover, increased use of high strength concrete makes the fatigue problem more important because the cross-section and dead weight are reduced by using high strength concrete. The purpose of this study is to investigate the shear fatigue behavior of reinforced concrete beams according to shear reinforcement ratio and concrete compressive strength under repeated loadings. For this purpose, comprehensive static and fatigue tests of reinforced concrete beams were conducted. The major test variables for the fatigue teats are the concrete strength and the amount of shear reinforcements. The increase of deflections and steel strains according to load repetition has been plotted and analyzed to explore the damage accumulation phenomena of reinforced concrete beams. An analytical model for shear fatigue behavior has been introduced to analyze the damage accumulation under fatigue loads. The failure mode and fatigue lives have been also studied in the present study. The comparisons between analytical results and experimental data show good correlation.

  • PDF

A Study on the Fatigue Properties of Ti-Ni Shape Memory Alloys (Ti-Ni계 형상기억 합금의 피로특성에 관한 연구)

  • S.Y Kim;S. Miyazaki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.482-490
    • /
    • 1997
  • The effects of strain amplitude. test temperature and stress on the fatigue properties for Ti-Ni wires were investigated using a rotary bending fatigue tester specially designed for wires. The fatigue test results were discussed in connection with the static tensile properties. The DSC measurement was conducted after fatigue test in order to clarify the change of transformation behavior due to the progress of fatigue. Under the temperature below or near the Af, the strain amplitude($\varepsilon_a$)-failure life (Nf) curve showed to be composed of three straight lines with two turning points. Of the 2 turning points, the upper one was coincident with the elastic limit strain and the lower one with the proportional limit strain. With rising of the test temperature above Af, the pattern of $\varepsilon_a$-Nf curve changed gradually to composition of 2 straight lines. The $\varepsilon_a$-Nf curve shifted depending on test temperature. In the short and medium life zones, the higher the temperature was, the shorter the fatigue life. However, in the long life zone, above the Af temperature, the fatigue life was not affected by the temperature. The transformation enthalpy measured after fatigue test was dependent on Nf, $\varepsilon_a$, and test temperature.

  • PDF

Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution (3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향)

  • 오세욱;김웅집
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.

A Prediction of Initial Fatigue Crack Propagation Life in a notched Component Taking Elasto-Plastic Behavior (탄소성 응력집중부에서의 초기피로균열전파수명의 예측)

  • Cho, Sang-Myung;Kohsuke Horikawa
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.61-70
    • /
    • 1988
  • In order to consider the concept of the fitness for purpose'in fatigue design of offshore structure, fracture mechanics is applied to evaluate initial or weld defects. Generally, linear elastic fracture mechanics has been applied to tstimate initial fatigue crack propagation rate as well as long fatigue crack propagation rate. But, initial fatigue crack propagation rate in elasto-plastic notch field may not be characterized by application of stress intensity factor range .DELTA. K, because plastic effect due to stress concentration of notch may contribute to initial crack propagation. Therefore, to introduce the plastic effect into fatigue crack driving force, in this studty, the evaluating method of J-integral range .DELTA. J, was developed by willson was modified for application to notch field. In calculation of .DELTA. J obtained from the modified J-integral, stress gradient and crack closure behavior in the notch field were considered. The initial crack propagation rates in the notch fields of mild steels and high tensile strength steels were correlated to .DELTA. J. As the result, it was cleared that the present .DELTA. J is applicable to charachterize the fatigue crack propagation rates in both the elastic and elasto-plastic notch fields.

  • PDF

Fretting Fatigue Behavior of High Strength Aluminum Alloys (고강도 알루미늄 합금의 프레팅 피로거동)

  • Choi, Sung-Jong;Lee, Hak-Sun;Lee, Cheol-Jae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.197-204
    • /
    • 2007
  • Fretting is a contact damage process that occurs between two contact surfaces. Fretting fatigue reduces fatigue strength of the material due to low amplitude oscillatory sliding and changes in the contact surfaces of strongly connected machine and structure such as bolt, key, pin, fixed rivet and connected shaft, which have relative slip of repeatedly extreme low frequency amplitude. In this research, the fretting fatigue behavior of 2024-T3511 and 7050-T7451 aluminum alloys used mainly in aircraft and automobile industry were experimentally estimated. Based on this experimental wort the following results were obtained: (1) A significant decrease of fatigue lift was observed in the fretting fatigue compared to the plain fatigue. The fatigue limit of 2024-T3511 aluminum alloy decreased about 59% while 7050-T7451 aluminum alloy decreased about 75%. (2) In 7050-T7451 specimen using ATSI4030 contact pad, crack was initiated more early stage than using 2024-T3511 contact pad. (3) In all specimens, oblique cracks were initiated at contact edge. (4) Tire tracks and rubbed scars were observed in the oblique crack region of fracture surface.

A Study of the Fatigue Crack Propagation Behavior According to the Moment Change using Infrared Thermography (열화상기술을 이용한 모멘트 변화에 따른 피로균열진전 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • The objective of this study is to propose an effective method for measurement and analysis of fatigue crack. A technique that can measure the statue of fatigue crack propagation fast and correctly for enhancing safety of constructions and securing reliability is necessary. Moreover, the crack propagation behavior characteristics evaluation technique has to be developed using this technique. In this paper, fatigue crack was caused via the fatigue experiment with repeated load on the CT specimen that is made up of STS304. Fatigue crack propagation was measured by tracing the position of the maximum temperature according to the cycles using infrared thermography. The crack growth characteristics was evaluated by applying the moment values on the measuring area to the measured value. As a result of this study, the possibility that the infrared thermography could be applied to measure the fatigue crack was identified. Moreover, it was identified that fatigue crack propagation have a relationship with the moment value of construction.

The Effect of Blast Cleaning for Steel Bridge Painting on Fatigue Behavior of Out-of-Plane Gusset Welded Joints (강교 도장용 블라스트 처리가 면외거셋 용접이음의 피로거동에 미치는 영향)

  • Kim, In Tae;Le, Van Phuoc Nhan;Kim, Kwang Jin;Lee, Dong Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.583-590
    • /
    • 2008
  • Blasting has been applied in newly-built steel structures for cleaning forged surfaces and increasing the adhesive property of applied painting systems. However, the effect of the blast cleaning on fatigue behavior of welded joints is not clear. In this paper, fatigue tests were carried out on out-of-plane gusset welded joints and the effect of the blast cleaning on the fatigue behavior was studied. The curvature radius at the weld toe of the surface-treated specimens by using the blast method is larger than that of as-welded specimens. By the blast cleaning compressive residual stresses were induced into weld toes. The experimental results showed that the fatigue life of surface-treated specimens is longer than that of as-welded specimens, even though the fatigue life of surface-treated specimens and that of as-welded specimens are not clearly different in the high stress range. About a 160% increase in fatigue limit could be realized by using blast cleaning.