• 제목/요약/키워드: Fatigue and durability test

검색결과 207건 처리시간 0.025초

고강도 PSC BEAM 교량의 휨거동 (Flexural Behavior of PSC Beam Using High Strength Concrete)

  • 정원기;이형준;이규정;윤석구;한승환;김기수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.706-711
    • /
    • 1998
  • Structural tests of the PSC Beam bridge using high strength concrete, concrete compressive strength 700kg/$\textrm{cm}^2$, are conducted for the application including durability and serviceability of the bridge. Current design safety factors with respect to the jacking force and the service design load DB-24 are applied to the design of the bridge. Concrete compressive strength 700kg/$\textrm{cm}^2$, girder depth 2.3m, girder space 3.2m, span length 20m, and slab thickness 27cm are selected for the bridge test. The Bulb-Tee section of the girders is applied instead of I section because it is well known more stable to the longer span(40m). Static load test(4 beams) with composite and non-composite section, and fatigue load test(1 beams) with composite section are conducted. Crack moment, ultimate load, deflections with load steps, and strains of the beam section for those bridges are investigated. The structural test results of the bridges showed a good performance for a safety and a serviceability.

  • PDF

고속용 풀리형식 장력조정장치 개발 (A Development of Pulley-type Tensioning Device for a High Speed Railway)

  • 조용현;권삼영;박영;이기원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.723-730
    • /
    • 2006
  • In the electrical railway, the tension ascension of contact wire is essential to speed up of train and current collection performance of catenary largely depends on the tension. The tension variation rate of the tensioning device used in existing line limits within 5%, and the tension variation rate of the spring-type tensioning device installed at the section where tensioning length is short bounds within 15%. So it is urgent for us to localize it for high speed line, which the tension variation rate is limited within 3%. Therefore in this study, a pulley-type tensioning device for high speed line is developed. To verify the performance of developed device, a performance test, overload test and failure test is carried out under the code of the Kyung-Bu High Speed line. And it is secured durability performance through a fatigue test.

  • PDF

3축 유압 피로 시뮬레이터의 커플링에 대한 역기구학적 해석 (Inverse Kinematic Analysis for a three-axis Hydraulic Fatigue Simulator Coupling)

  • 김진완
    • 항공우주시스템공학회지
    • /
    • 제14권1호
    • /
    • pp.16-20
    • /
    • 2020
  • 차량이 주행 중에 그리고 항공기가 활주로에 착륙하는 순간과 활주 중에 발생하는 피로는 착륙장치, 기체와 차량의 현가장치 등에 수명 주기와 밀접한 관련이 있다. 휠에 작용하는 하중들은 종축 힘, 횡력, 수직력과 제동력이다. 차량의 동특성과 내구성을 연구하기 위해 본 논문의 시뮬레이터는 시험실에서 실제 노면 형상을 재현에 사용된다. 그러므로 제품 개발 시간과 비용을 절감할 수 있다. 하드웨어적으로 유압 피로 시뮬레이터 구조의 중요한 요소는 각 축을 분리하고 여러 하중과 진동을 견뎌내는 것이다. 본 논문의 역기구학적 해석 방법은 Dummy wheel 중심에서 축 방향으로 최대 동작 변위를 준 후 커플링에 의한 유압 서보 작동기의 작동 크기를 도출한다. 해석의 결과는 실제 노면 형상을 정확하게 재현하기 위해 축 간의 커플링이 미약함을 확인하는 것이다.

30mm 자동포용 폐쇄기의 내구성 향상에 관한 연구 (A Study on Durability Improvement of Breech Block for 30mm Automatic Gun)

  • 박영민;김성훈;노상완;김성진
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.47-53
    • /
    • 2020
  • 본 연구는 30mm 자동포에 적용 중인 폐쇄기의 내구성을 향상시킴으로서 제품의 신뢰성을 증가시키는 것을 목적으로 하고 있다. 연구 대상인 폐쇄기는 왕복운동을 통해 탄의 장전, 약실 폐쇄, 탄피 추출 등의 기능을 하는 포의 주요 구성품으로 높은 신뢰성이 요구되지만 운용 중 폐쇄기 균열이 조기에 발생됨에 따라 개선이 필요하였다. 개선을 위해 원인 분석을 수행하여 균열은 반복적인 충격에 의해 발생함을 확인하였다. 그러하여 다음과 같은 개선방안을 연구하고 입증 사격을 통해 효과를 증명하였다. 개선방안으로 소재 변경으로 충격 흡수에너지를 증가시켰으며 균열 부위의 R 값을 증대하여 응력 집중을 완화하였다. 또한, 쇼트피닝 추가, 크롬도금 삭제, 단조 방법 변경으로 피로수명을 증가시켰다. 개선품의 입증 사격 결과 5,000발까지 사격 장애가 발생하지 않았고 균열의 시작이 늦춰졌으며 그 깊이가 작아졌다. 따라서 개선방안이 적용된 폐쇄기는 기존 제품 보다 내구성이 향상됨을 확인하였다. 본 연구는 유사제품의 내구성 향상, 폐쇄기 균열 성장 속도 예측(수명 연구) 및 균열 허용 기준 설정을 추진할 때 유용한 참고 자료로 활용될 수 있을 것으로 기대된다.

인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가 (Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process)

  • 이학성;강신재
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • 한국포장학회지
    • /
    • 제16권1호
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

동적 파워 케이블의 해양운용환경 내구성 검증시험에 관한 연구 (A Study for Durability Test of Dynamic Power Cable under Marine Operating Environment Condition)

  • 심천식;김철민;노유호;이재복;채광수;송하철;김호경;배철민;위성국;임기천
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.49-57
    • /
    • 2021
  • In the production power transmitting of a floating production system like a wind offshore floating, the power cable should be connected from the surface system into the subsea system. The connection between the surface and the subsea system will make the power cable get a dynamic load like current and wave forces. Based on this condition, a dynamic power cable is required to endure external physical force and vibration in the long-term condition. It needs more requirements than static power cable for mechanical fatigue properties to prevent failures during operations in marine environments where the external and internal loads work continuously. As a process to verify, the durability test of dynamic power cables under the marine operation environment condition was carried out by using domestic technology development.

차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측 (Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis)

  • 김병삼;강기준;박경우;노광두
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

80 MPa급 고강도 콘크리트를 적용한 RC 바닥판의 피로 성능 평가 (Evaluation of Fatigue Performance of RC Deck Slabs by 80 MPa High-Strength Concrete)

  • 배재현;황훈희;유동민;박성용
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.66-72
    • /
    • 2017
  • Recently, the use of high-strength concrete is increasing due to the trend of constructing high-rise and long span structures. The benefit of using the high-strength concrete is that it increases the durability and strength while it reduces the cross-sectional area of the bridge deck slabs. Moreover, it offers more safety as these bridge deck slabs applying high-strength requires strict structural performance verification. In this study, the fatigue performance of the bridge deck slabs applying 80 MPa high-strength concrete was verified through various experiments. The experimental results showed that the specimens satisfy the conditions of flexural strength, punching shear strength, deflection and cracking. In conclusion, the bridge deck slabs designed by 80 MPa high-strength concrete are enough safe despite of its low thickness.

폴리아크릴 레진의 누수보수재 성능평가 (A Study on the Application of Water Leakage Repair Materials through the Performance Evaluation of Polyacrylic Resin.)

  • 조일규;유재형;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.193-194
    • /
    • 2018
  • In this study, various materials such as epoxy material, urethane material, cement material, and acrylic material are used to solve the water leakage occurring in underground structures. However, in the reality that the durability is insufficient and the effect is insufficient, it is aimed to improve the repairing effect by using acrylics. As a second study, it is confirmed that leachate can be used as a repair material by considering long time under water stability, elongation range test, fatigue resistance test, tube stability test, damage recovery performance ana temperature stability considering leakage environment for polyacrylate. In addition, this material is applied to Expansion Joint to perform leakage repair, and to verify the effect of repairing leakage by monitoring and visual observation of concrete humidification.

  • PDF