• Title/Summary/Keyword: Fatigue Testing Load

Search Result 115, Processing Time 0.026 seconds

Fatigue Behavior of Glassy Polymers by Ultrasonic NDE (초음파탐상법에 의한 유리질 중합체의 피로거동 해석)

  • Lee, O.S.;Rho, E.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.56-64
    • /
    • 1990
  • It is well-known that the defects (existing in structures) and the material degradation(caused by the fatigue load) generally initiate the failure of structures. The NDE such as ultrasonic technique which can be used to detect the size and the orientation of defects has been utilized to estimate the life and stability of structures. However, only few experimental reports made by using the ultrasonic technique have been published for the case of fatigue estimation of materials and structures. The purpose of this study is, thus, to derive the relationship between ultrasonic attenuation and fatigue behavior of Polycarbonate and PMMA through ultrasonic characterization. It is also attempted to offer NDE experimental procedure which may be useful to predict fatigue life.

  • PDF

Fatigue Characteristics of Laser Welded Zirconium Alloy Thin Sheet (레이저 용접된 박판 지르코늄 합금의 피로특성)

  • Jeong, Dong-Hee;Kim, Jae-Hoon;Yoon, Yong-Keun;Park, Joon-Kyoo;Jeon, Kyeong-Rak
    • Journal of Welding and Joining
    • /
    • v.30 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The material used in this study is a zirconium alloy with 0.66 mm of thickness. The fatigue strength under cyclic load was evaluated at stress ratio R=0.1. S-N curves are presented with statistical testing method recommend by JSME- S002 and compared with S-N curves at R.T. and $315^{\circ}C$. As a result of the experimental approach, the design guide of fatigue strength is proposed and the results obtained from this study are expected to be useful data for spacer gird design.

Fatigue Crack Growth and Fracture behavior of Rail Steels

  • Seo, Jung Won;Kwon, Seok Jin;Lee, Dong Hyeong;Kwon, Sung Tae;Choi, Ha Yong
    • International Journal of Railway
    • /
    • v.5 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • Contact fatigue damages on the rail surface, such as head checks and squats are a growing problem. The fatigue cracks forming on the contact surface grow according to load and lubricating conditions and may end up breaking the rail. Rail fracture can be avoided by preventing the cracks from reaching the critical length. Therefore, the crack growth rate needs to be estimated precisely according to the conditions of the track and load to develop a maintenance plan against rail damages. Therefore, it is important to understand the mechanism of cracks initiation and growth on a rail due to repetitive rolling contact. In this study, we have investigated the crack growth behavior on the rail surface by using the twin-disc tests and the finite element analysis.

Prediction of the Fatigue Crack Growth from Strain Measurement on Spot Welded Nugget Zone (점 용접 너깃부에서의 변형률 측정에 의한 피로균열성장 예측)

  • 김덕중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.140-145
    • /
    • 1997
  • In case of spot-welded joints, the fatigue cracks generally originate from the weld interfaces of the neighborhood nugget tips, and propagate toward the outer surfaces of the sheets. Generally, because fatigue crack was observed in nugget around, strain gage was attached at nugget zone. Accordingly, it was very difficult to detect the generation time of fatigue crack in spot-welded joints and to measure the propagation speed of fatigue crack. We developed the non-destructive method, according to which th fatigue crack propagation rate can be quantitatively estimated by utilizing information obtained from strain gages bonded on the electrode indentations of spot welds. The results measured by real crack were compared with the data which was measured by strain gauge method in fatigue testing. And so fatigue strength was evaluated by stress intensity factor. In this study behavior of fatigue crack propagation under repeated load were considered.

  • PDF

A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS (안내궤도 차량 부품의 피로 수명 예측에 관한 연구)

  • Lee, Soo-Ho;Park, Tae-Won;Yoon, Ji-Won;Jeon, Yong-Ho;Jung, Sung-Pil;Park, Joong-kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

Fatigue Strength for the Non Load Carrying cruciform Welded Joints of High Strength Steel (고강도강 하중비전달형 십자용접연결부의 피로강도)

  • Kim, Sung Hoon;Bae, Doo Byong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.453-461
    • /
    • 2002
  • This study investigated the fatigue stength of non-load carrying cruciform welded joints, which was maunfactured using the SM570 and POSTEN80 high strengh steel. Factors such as fatigue strength, fatigue crack initiation and propagation, thickness effect, and the relatioinship between the static strength and the fatigue strength were examined and compared with previous fatigue testing results. Results showed that the fatigue strength of SM570 and POSTEN80 steel are higher than the grade represented on the design specification. It is also identified the size effect and the dependence of the static stength in a few cases.

A STUDY ON THE BOND STRENGTH OF RESIN-RETAINED PROTHESIS WITH VARIOUS CAST RETAINER DESIGNS (주조체의 설계 변화에 따른 수지접착형 보철물의 접착강도에 관한 연구)

  • Joo Dae-Won;Chang Ik-Tae;Kim Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.508-525
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of some resistance form designs on the bond strength of resin-retained prosthesis. Six sub-groups are designed in natural teeth group and resin teeth group . The framework designs in natural teeth group: 1) no groove preparation 2) groove at the center of distal surface 3) groove at the distobuccal line angle 4) 45 degree lateral load with no groove 5) 45 degree lateral load with center groove 6) splint two teeth with no groove. The framework designs in resin teeth group: 1) no groove preparation 2) groove at the center of distal surface 3) groove at the distobuccal line angle 4) metal covered the 1/2 of distal surface 5) metal covered the 1/2 of mesial surface 6) metal extended over the 114 of buccal surface. Specimens were treated electrolytic etching by Oxy-Etch and cemented with Panavia EX. Failure load was measured by Instron. Another 30 specimens were carried out fatigue tests by MTS 810 fatigue testing machine for 5000 cycles at different load level. The following results were obtained from this study. 1. The failure load was significantly increased by resistance forms. 2. The failure load was not increased by increase of total surface area bonded with teeth. The distal surface area played an important role in failure load. 3. In 45 degree lateral load group, the failure load was decreased significantly than that of in vertical load group. 4. Bond failure modes between static test and fatigue test exhibited no differences.

  • PDF

A Study on the Fatigue Strength of Lap Weld of LNG Tank (LNG탱크 겹침용접부의 피로강도에 관한 연구)

  • Kim, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.29-35
    • /
    • 1999
  • At the design of Mark III membrane type LNG tank, an analytical and experimental approach on the fatigue strengths of membrane and its welds are very important in order to assist designers and surveyors. In this study, fatigue tests of lap weld of Mark III membrane type LNG tank were carried out and cumulative damage factor was calculated in order to estimate the fatigue life by probability density function and rule methods. It contained the following tests and reviews : 1) The fatigue tests of lap weld of stainless steel according to statistical testing method recommended by JSME, 2)Preparation of S-N curve for lap welds considering the statistical properties of the results of fatigue tests. 3) Procedure for estimating the initiation life of fatigue crack of lap welds under variable loads by the rule lf classification society and probability density function, 4) Guideline for inspection of lap welds fo membrane type LNG tank.

  • PDF

The Study on Microstructures and Mechanical Properties of Mild Steel Joined with Various Spot Welding Conditions (점용접 조건에 의한 연강의 미세조직 및 기계적특성에 관한 연구)

  • 강연철;김대영;김완기;김석원
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2000
  • Spot welding, namely a kind of electric resisting welding has been used widely in field of automobile and aircraft industries because of easiness to apply. Specimens used in this study was a mild steel of 1.2mm thickness and the electrode was a Cu-Cr alloy of 6mm diameter. The surface sheared of specimens after testing of tensile shear was observed by SEM(scanning electron microscope) after ultrasonic cleaning for 10min., and microstructures and grain size of all specimens were measured with using of O.M.(Optical microscope). By the means of measurement and observations of tensile shear load, fatigue strength and share surface, the weldability of spot welding was evaluated. When tensile shearing testing, fracture starting point in all specimens was took place at the bond between HAZ(Heat affected zone) and nugget. With increasing in number of layers, fatigue strength was decreased. With increasing in electric current, grain size in the HAZ became more fine.

  • PDF

Experimental Study on Fatigue Crack in Welded Crane Runway Girders(I) -Initiation and Propagation of Fatigue Crack- (크레인 거더의 피로균열에 관한 실험적 연구(I) -피로균열의 발생과 진전-)

  • Im, Sung Woo;Kim, Jin Ho;Chang, In Hwa;Shinga, Atsumi
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.237-248
    • /
    • 1997
  • Three types of fatigue cracks frequently observed in the crane runway girders are verified experimentally using two testing-purpose girders with the size of $6400{\times}600{\times}300$ in millimeters. The fatigue cracks are observed in the vicinity of load-bearing points, at the end of gusset plates and at the fillet welded joints between the lower flange and the web. The load-bearing-point cracks are initiated at the intersection of the fillet welds between the upper flange and the web, where the vertical stiffener is located. The cracks grow up toward the diagonal direction of the web. The cracks observed at the fillet welded joints grow up perpendicularly to the crane runway girder. Compared with the JSSC fatigue design code, the joint class is classified as follows: E for the vicinity of load-bearing points, G or H for the end of gusset plates and D for the lower fillet welded joints. The tests reveal that the class of joint classification at the end of gusset plates and at the lower flange coincides with the fatigue design code.

  • PDF