• 제목/요약/키워드: Fatigue Strength Analysis

검색결과 647건 처리시간 0.026초

직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰 (Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay)

  • 김영규;이승우
    • 대한토목학회논문집
    • /
    • 제33권3호
    • /
    • pp.1153-1163
    • /
    • 2013
  • 접착식 콘크리트 덧씌우기는 기존 콘크리트 포장과의 재료물성이 유사하여 적절한 유지보수 공법으로 제시되고 있으며, 덧씌우기층과 기존 포장층이 완전부착을 통한 일체화 거동을 하여 우수한 구조적 성능을 확보할 수 있다. 따라서 접착식 콘크리트 덧씌우기의 장기 공용성을 위하여 적절한 부착강도 기준을 확보하는 것이 매우 중요하다. 본 연구에서는 다양한 부착 특성이 부착강도에 미치는 영향을 고찰하고자 하였으며, 덧씌우기 재료, 기존 포장의 압축강도 및 휨강도 변화, 기존 포장의 열화상태 등 다양한 부착조건에 대한 직접인장 및 간접인장 실험을 실시하여 도출되는 부착강도를 비교 분석하고자 하였다. 연구 결과, 직접인장실험에 의한 부착강도가 간접인장실험에 의한 부착강도보다 상대적으로 높게 분포하는 경향을 나타내고 있으나, 결정계수 0.75 및 P-value 0.002의 높은 부착강도 상관관계를 확보하였다. 이를 통하여 접착식 콘크리트 덧씌우기의 실제 현장 거동을 모사할 수 있는 반복하중에 의한 부착 피로 특성 분석 시 직접인장 및 간접인장 실험의 상관관계를 활용할 수 있을 것으로 판단된다.

경량형 시트 쿠션 익스텐션 모듈 개발에 관한 연구 (A Study on the Development of Lightweight Seat Cushion Extension Module)

  • 장한슬;최성규;박상철;임헌필;오으뜸
    • 한국산학기술학회논문지
    • /
    • 제17권8호
    • /
    • pp.200-207
    • /
    • 2016
  • 자동차 시트는 운행 중에 운전자와 항상 같이 움직이는 핵심부품으로 다양한 기능과 편의장치를 포함하는 제품의 개발이 활발히 진행되고 있는 추세이다. 본 논문에서는 경량화 소재를 적용한 경량형 시트 쿠션 익스텐션 모듈 개발을 위해 구조강도 해석평가, 수직강도 시험평가, 그리고 내구강도 시험평가를 수행하였다. 구조해석 결과, 수직 하중 부하 시 변형량의 최대값은 4.98mm로 상판의 최 전단에서 발생하였다. 최대응력은 약 105MPa로 익스텐션 모듈의 상판과 하판이 접촉하는 부분에서 발생함을 확인하였다. 수직강도 시험평가 결과, 수직 하중 부하 시 변형량의 최대값은 5.31mm로 구조해석 결과 대비 약 6.45% 정도의 차이가 나타났으며 수직강도 및 20,000회 내구강도 시험 후 제품에는 작동 시 유해한 변형 및 파괴가 없음을 확인함으로써 구조 안전성을 검증하였다. 본 연구에서는 엔지니어링 플라스틱 소재를 적용하여 기존 양산품 대비 약 30%의 중량절감을 확인하였고 정적 강도, 내구 강도 시험 후 파손이 되지 않으므로 승객의 안정성과 제품의 충분한 강도와 강성을 검증하였다. 본 논문에서 수행한 연구결과는 환경/연비규제 강화에 대응 가능 및 운전자의 피로도 감소로 인한 사고 예방 효과 증대, 고급 승용차뿐만 아니라 소형 및 경차종, 상용차, 특장차 등에 확대 적용, 친환경, 경량화 소재 적용기술을 활용한 타 산업분야 및 부품에 확대 적용이 예상된다.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

해양 가이드-타워의 고정말뚝에 대한 신뢰도 해석 (Reliability Analysis of Offshore Guyed Tower Against Anchor Pile Failures)

  • 류정선;윤정방;강성후
    • 전산구조공학
    • /
    • 제4권3호
    • /
    • pp.117-127
    • /
    • 1991
  • 해양가이드-타워에 관하여 폭풍 발생시, 계류장치 고정말뚝의 파괴를 주안점으로 한 신뢰도해석 방법에 대하여 연구하였다. 말뚝의 파괴는 최대하중에 대한 것과 반복하중에 대한 것의 두가지 조건을 고려하였다. 최대하중으로 인한 파괴확률은 최초발생확률의 산정방법을 사용하였다. 반면, 반복하중으로 인한 파괴확률은 점토층에 타설된 말뚝에 대한 피로곡선을 바탕으로하여 구하였다. 불규칙파랑에 대한 구조물의 동적해석은 비선형문제의 선형화를 통한 주파수영역 해석으로부터 효율적으로 수행되었다. 수치해석결과, 말뚝지지력의 평균 안전도가 낮고 이의 분산계수가 클수록, 반복하중으로 인한 파괴확률이 최대하중으로 인한 파괴확률과 같은 수준으로 커짐을 알 수 있었다.

  • PDF

시일과 스틸면 사이의 구형 마멸입자에 의한 접촉해석 (Contact Analysis between Rubber Seal, a Spherical Wear Particle and Steel Surface)

  • 박태조;유재찬;조현동
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.297-301
    • /
    • 2008
  • In many dynamic seals such as lip seal and compression packings, it is well known that wear occur at the surface of heat treated steel shaft as results of the intervened wear particle. It is widely understood that the dominant wear mechanism related in sealing surfaces is abrasive wear. However, little analytical and experimental studies about this problems have been done until now. In this paper, a contact analysis is carried out using MARC to investigate the wear mechanism in contact seal applications considering elastomeric seal, a elastic perfect-plastic micro-spherical particle and steel surface. Deformed seal shapes, contact and von-Mises stress distributions for various particle sizes and interference are showed. The maximum von-Mises stress within steel shaft was exceeded its yield strength and plastic deformation occurred at steel surface. Therefore, the sealing surface can be also worn by sub-surface fatigue due to wear particles together with well known abrasion. The numerical methods and models used in this paper can be applied in design of dynamic sealing systems, and further intensive studies are required.

Loading rate effect on superelastic SMA-based seismic response modification devices

  • Zhu, Songye;Zhang, Yunfeng
    • Earthquakes and Structures
    • /
    • 제4권6호
    • /
    • pp.607-627
    • /
    • 2013
  • The application of shape memory alloys (SMAs) to the seismic response reduction of civil engineering structures has attracted growing interest due to their self-centering feature and excellent fatigue performance. The loading rate dependence of SMAs raises a concern in the seismic analysis of SMA-based devices. However, the implementation of micromechanics-based strain-rate-dependent constitutive models in structural analysis software is rather complicated and computationally demanding. This paper investigates the feasibility of replacing complex rate-dependent models with rate-independent constitutive models for superelastic SMA elements in seismic time-history analysis. Three uniaxial constitutive models for superelastic SMAs, including one rate-dependent thermomechanical model and two rate-independent phenomenological models, are considered in this comparative study. The pros and cons of the three nonlinear constitutive models are also discussed. A parametric study of single-degree-of-freedom systems with different initial periods and strength reduction factors is conducted to examine the effect of the three constitutive models on seismic simulations. Additionally, nonlinear time-history analyses of a three-story prototype steel frame building with special SMA-based damping braces are performed. Two suites of seismic records that correspond to frequent and design basis earthquakes are used as base excitations in the seismic analyses of steel-braced frames. The results of this study show that the rate-independent constitutive models, with their parameters properly tuned to dynamic test data, are able to predict the seismic responses of structures with SMA-based seismic response modification devices.

전동차용 헬리컬기어의 축 조립오차에 따른 굽힘강도의 영향 (Effect of Shaft Misalignment on Bending Strength of Helical Gear for Metro Vehicles)

  • 이동형;최돈범;강성웅;최하영
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.64-72
    • /
    • 2022
  • Gear designers need to select the proper tolerances for deviations in both the center distance and parallelism of axes because these deviations cause high stresses and lead to fatigue breakage of the teeth. In this study, a three-dimensional finite element analysis model was developed for a helical gear used in metro vehicles, and a bending stress analysis method for gear pairs was established according to the contact position change. Using this model, the effect of shaft misalignment due to the center distance and shaft parallelism deviations on the bending stress of the gear was analyzed. As a result, the magnitude of the bending stress changed nearly linearly with the change in the center distance deviation. The tooth contact of the helical gear is biased toward the end of the tooth width when the parallelism deviations of the shaft occur, and the tooth root bending stress increases.

동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰 (Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure)

  • 함주혁;강병윤;추경훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

취성재료의 장기 강도시험 중 미소파괴음 신호 분석 (Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials)

  • 천대성;정용복
    • 터널과지하공간
    • /
    • 제27권3호
    • /
    • pp.121-131
    • /
    • 2017
  • 본 연구에서는 암석과 콘크리트의 정적 및 동적 장기강도시험을 통해 이들 재료의 시간 의존적 거동에 대해 연구했으며, 특히 장기강도시험 중 발생한 미소파괴음 신호를 분석하여 장기 안정성 평가에 활용하고자 하였다. 정적 장기강도시험의 경우 임계하 균열성장시험을 활용하여 Mode I과 Mode II에 대한 장기거동과 미소파괴음 발생특성을 분석하였으며, 동적 장기강도시험의 경우, 반복재하 4점 굴곡시험을 통한 장기강도의 한계와 미소파괴음 발생특성을 분석하였다. 미소파괴음 분석결과, 미소파괴음 히트 누적곡선 대 시간에 따른 곡선은 1차, 2차, 3차 구간이 있는 크립곡선의 모양과 유사한 모양을 보였다. 선형구간에 해당하는 미소파괴음 히트 누적곡선의 2차 구간의 기울기와 지연파괴시간과의 로그-로그 관계로부터 암석과 콘크리트의 정적 및 동적 장기 안정성을 평가하는 방안에 대한 가능성을 제시하였다.