• 제목/요약/키워드: Fatigue Strength Analysis

검색결과 647건 처리시간 0.028초

Fatigue Strength Evaluation of the Clinch Joints of a Cold Rolled Steel Sheet

  • Kim, Ho-Kyung
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.131-138
    • /
    • 2009
  • Static tensile and fatigue tests were conducted using tensile-shear specimens to evaluate the fatigue strength of a SPCC sheet clinch joint. The maximum tensile strength of the specimen produced at the optimal punching force was 1750 kN. The fatigue endurance limit (=760 N) approached 43% of the maximum tensile load (=1750 N) at a load ratio of 0.1, suggesting that the fatigue limit is approximately half of the value of the maximum tensile strength. The FEM analysis showed that at the fatigue endurance limit, the maximum von-Mises stress of 373 MPa is very close to the ultimate tensile strength of the SPCC sheet (=382 MPa).

  • PDF

고장력볼트의 인장피로강도에 관한 실험적 연구 (Experimental Study on Tensile Fatigue Strength of the High Strength Bolts)

  • 한종욱;박영석
    • 대한토목학회논문집
    • /
    • 제28권2A호
    • /
    • pp.165-170
    • /
    • 2008
  • 각국의 강구조물 시공현장에서 사용되고 있는 고장력볼트의 인장강도는 일반적으로 1,000 MPa급이 주종을 이루고 있으나, 고강도강과 극후판의 개발과 교량 지간의 장대화로 인하여 강도가 큰 새로운 볼트 개발이 요구되고 있다. 한편, 반복적인 하중이 작용하는 곳에서 인장연결부에 사용되는 고장력볼트에 인장피로파괴 사례가 발생되고 있으나 아직까지 우리나라에서는 이에 대한 이론 및 실험적인 연구가 없는 실정이다. 따라서, 본 연구에서는 현재 일반적으로 사용하고 있는 F8T, F10T볼트와 새로이 개발된 F13T, F13T-N볼트에 대해서 인장피로실험을 수행하였다. 고장력볼트에 대한 피로강도평가는 반복횟수 200만회에 95% 하한신뢰도분석을 하여 수행하였고, 이를 기초로 3가지의 피로강도 기준안을 제시하였다. 또한, KS나사형상의 볼트와 새로이 제안된 나사선 형상의 볼트에 대한 피로강도에 대해서 비교 검토하였다.

침탄 및 고주파 열처리한 치차의 굽힘피로강도 평가 (Bending Fatigue Strength of Carburized and Induction Hardened Gears)

  • 김완두;최병익;한승우;김정훈
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.1-8
    • /
    • 1994
  • To enhance the strength of gears for transmission, Generally caburizing heat treatment is applied. But there are some problems in this technology the distortion of gears during heat treatment process, and the discontinuity of manufacturing process. For these reasons, the high frequency induction hardening process is widely used. This method is one of the surface hardening process to improve the wear resistance and fatigue life of the machine components. In this study, to compare the bending fatigue strength of caburized gear with that of induction hardened gear, bending fatigue testing of gears with two different cases was performed by using an electrohydraulic servo-controlled fatigue testing machine and double tooth bending fatigue test fixture. Fatigue life distributions at constant stress levels were established directly from fatigue data. For gear design, the fatigue strength distribution at specified life is more important. This distribution is obtained by statical transformation from fatigue life distribution. Reliability of bending fatigue strength was estimated by P-S-N curves and Weibull distribution.

  • PDF

십자형 용접부 피로강도 산정을 위한 국부응력법의 비교연구 (A Comparative Study of the Fatigue Strength on Cruciform Joints by Local Stress Methods)

  • 양박달치;안정현
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.573-579
    • /
    • 2010
  • The notch effects on the fatigue strength of welded joints are both stress concentration and fatigue strength reduction. In the notch stress approach, the notch effects are usually approximated by introducing weld-bead parameters for the local detailed weld joints. In this paper, well-known notch stress approaches - critical distance method, area method and fictitious rounding method are presented for the fatigue strength of cruciform joints. The estimated results of the present methods are applied to the experiments performed in this study and reported in the references. The results of the application show that the fatigue-life scatterness of the experimental data expressed in the nominal stress is significantly reduced by introducing the effective fatigue stress of the present study.

대형 엔진 실린더 라이너의 강도평가 (Strength Evaluation of the Cylinder Liner of Low-Speed Marine Engine)

  • 김병주;손정호;박진수;최호정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.663-668
    • /
    • 2001
  • Strength evaluation was carried out for the cylinder liner of a low-speed marine engine. Calculation of temperature distribution, nonlinear structural analysis, material test, and fatigue strength evaluation are briefly introduced in this paper. Strengths of five liner models are compared, and the effect of materials experiencing different heat treatment is evaluated. Structural analysis including boundary and material non-linearities was performed for axisymmetric liner models. High cycle (fatigue limit) and low cycle (fatigue life) fatigue analyses are carried out. As results, localized high stress was occurred next to the mount line. Maximum stresses are varied significantly with respect to different liner models and different materials.

  • PDF

열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석 (A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel)

  • 김철수;정화영;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF

GFRP 복합구조의 피로신뢰성 해석모형에 관한 연구 (Fatigue Reliability Analysis Model for GFRP Composite Structures)

  • 조효남;신재철;이승재
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.29-32
    • /
    • 1991
  • It is well known that the fatigue damage process in composite materials is very complicated due to complex failure mechanisms that comprise debounding, matrix cracking, delamination and fiber splitting of laminates. Therefore, the residual strength, instead of a single dominant crack length, is chosen to describe the criticality of the damage accumulated in the sublaminate. In this study, two models for residual strength degradation established by Yang-Liu and Tanimoto-Ishikawa that are capable of predicting the statistical distribution of both fatigue life and residual strength have been investigated and compared. Statistical methodologies for fatigue life prediction of composite materials have frequently been adopted. However, these are usually based on a simplified probabilistic approach considering only the variation of fatigue test data. The main object of this work is to propose a fatigue reliability analysis model which accounts for the effect of all sources of variation such as fabrication and workmanship, error in the fatigue model, load itself, etc. The proposed model is examined using the previous experimental data of GFRP and it is shown that it can be practically applied for fatigue problems in composite materials.

  • PDF

MPV 프레임의 피로수명 예측 (Fatigue Life Prediction of a Multi-Purpose Vehicle Frame)

  • 천인범;조규종
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.146-152
    • /
    • 1998
  • Recently, for the development of vehicle structures and components there is a tendency to increase using numerical simulation methods compared with practical tests for the estimation of the fatigue strength. In this study, an integrated powerful methodology is suggested for fatigue strength evaluation through development of the interface program to integrate dynamic analysis quasi-static stress analysis and fatigue analysis, which were so far used independently. To verify the presented evaluation method, a single and zigzag bump run test, 4-post road load simulation and driving durability test have been performed. The prediction results show a good agreement between analysis and test. This research indicates that the integrated life prediction methodology can be used as a reliable design tool in the pre-prototype and prototype development stage, to reduce the expense and time of design iteration.

  • PDF

대차프레임의 피로설계 및 피로강도 평가 (Fatigue Design and Fatigue Strength Evaluation of Bogie Frame)

  • 이상록;이학주;한승우;김정엽;차정환;강재윤;박찬경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.234-241
    • /
    • 2000
  • Stress analysis of the bogie frame by using the finite element method has been performed for the various loading conditions according to the results of vehicle dynamics analysis. Multiaxial fatigue analysis methods such as signed von Mises method, and typical critical plane theories were reviewed, and margin of safety for fatigue is defined. Multiaxial fatigue analysis program to predict the margin of safety of bogie frame under non-proportional loading conditions has been developed by using a commercial command language. Fatigue analysis of bogie frame under multiaxial loading was performed through this program and finite element analysis result. The procedure developed in this study is considered to be useful for the fatigue strength analysis in preliminary design stage of railway components under multiaxial loading condition.

  • PDF

커넥팅 로드의 피로강도에 대한 신뢰성 해석 (Reliability Analysis in Fatigue Strength of Connecting Rod)

  • 김철수;이준형;김정규
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1651-1658
    • /
    • 2001
  • It is necessary to evaluate fatigue strength and reliability of the connecting rod which is core part in automotive engine to assure the high level of durability of automobile. For this purpose, the loading conditions in automotive engine is obtained by the dynamic analysis. Based on these results, the critical section was identified by the finite element analysis. The fatigue strength under constant amplitude was evaluated and the mean of the fatigue limit at R = -2.27 derived from the staircase method was 311.2MPa. And the failure probability( F$\sub$p/ ) derived from the strength-stress interference model is 0.0003% at the 99.99% confidence level and the mean factor of safety was 4.2.