• Title/Summary/Keyword: Fatigue Reliability

Search Result 543, Processing Time 0.02 seconds

Safety Assessment of Double Skin Hull Structure against Ultimate Bending and Fatigue Strength (이중선각구조 선박의 최종굽힘강도와 피로강도에 대한 안전성 평가)

  • P.D.C. Yang;Joo-Sung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.93-102
    • /
    • 1992
  • In this paper presented is the reliability analysis of a double skinned hull structure against the ultimate bending moment and fatigue strength under longitudinal bending. The ultimate bending strength is obtained through the beam-column approach in which the load-end shortening curves(stress-strain curves) of stiffened plates under mini-axial compression are derived using the concept of plastic hinge collapse. The fatigue damage only is considered as fatigue failure for which the Miner's damage rule is employed. Assessed are fatigue reliability for the possible joint types found at deck structure. Also included is the reliability analysis of a series system of which elements are ultimate and fatigue failure.

  • PDF

Reliability Analysis and Fatigue Models of Concrete under Flexural or Split Tensional Cyclic Loadings (휨 또는 쪼갬인장 반복하중을 받는 콘크리트의 신뢰성 해석과 피로모델 제안)

  • Kim Dong-Ho;Sim Do-Sik;Kim Sung-Hwan;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.581-589
    • /
    • 2004
  • This paper compares the fatigue behaviors of concretes subjected to flexural and split-tensional loadings, and proposes the fatigue reliability models based on experimental results and reliability analysis. The fatigue tests were performed for the specimens of $150 mm{\times}75 mm$ split tensional cylinders and $150 mm{\times}150 mm{\times}550 mm$ flexural beams under constant loadings at three levels (70, 80 and $90\%$) with 0.1 stress ratio, 20 Hz loading speed and sine wave. The reliability analysis on fatigue data was based on Weibull distribution of two-parameters. From fatigue test results, two criteria were proposed to reject the experimental fatigue data because of statistical variation of concrete fatigue data. Two parameters ($\alpha$and u) of Weibull distribution were obtained using graphical method, moment method and maximum likelihood method. The probability density function(P.D.F) and cumulative distribution function(C.D.F) of the Weibull distribution for fatigue life of pavement concrete were derived for various stress levels using parameters, $\alpha$ and u. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable at $5\%$ level of significance. Based on reliability analysis, a fatigue model for pavement concrete was proposed and compared from existing models.

Structural Reliability Evaluation on Solder Joint of BGA and TSSOP Components under Random Vibration using Reliability and Life Prediction Tool of Sherlock (신뢰성 수명예측 도구 Sherlock을 활용한 랜덤진동에서의 BGA 및 TSSOP 솔더 접합부의 구조 신뢰성 평가)

  • Park, Tae-Yong;Park, Jong-Chan;Park, Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1048-1058
    • /
    • 2017
  • One of the failure mechanism of spaceborne electronics is a fatigue fracture on solder joint under launch random vibration. Thus, a necessity of early diagnosis through the fatigue life evaluation on solder joint arises to prevent such potential risk of failure. The conventional life prediction methods cannot assure the accuracy of life estimation results if the packaging type changes, and also requires much time and effort to construct the analysis model of highly integrated PCB with various packaging types. In this study, we performed life prediction of PCB based on a reliability and life prediction tool of sherlock as a new approach for evaluating the structural reliability on solder joint, and those prediction results were validated by fatigue tests. In addition, we also investigated an influence of solder height on the fatigue life of solder joint. These results indicated that the Sherlock is applicable tool for evaluating the structural reliability of spaceborne electronic.

Thermo-mechanical Reliability Analysis of Copper TSV (구리 TSV의 열기계적 신뢰성해석)

  • Choa, Sung-Hoon;Song, Cha-Gyu
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • TSV technology raises several reliability concerns particularly caused by thermally induced stress. In traditional package, the thermo-mechanical failure mostly occurs as a result of the damage in the solder joint. In TSV technology, however, the driving failure may be TSV interconnects. In this study, the thermomechanical reliability of TSV technology is investigated using finite element method. Thermal stress and thermal fatigue phenomenon caused by repetitive temperature cycling are analyzed, and possible failure locations are discussed. In particular, the effects of via size, via pitch and bonding pad on thermo-mechanical reliability are investigated. The plastic strain generally increases with via size increases. Therefore, expected thermal fatigue life also increase as the via size decreases. However, the small via shows the higher von Mises stress. This means that smaller vias are not always safe despite their longer life expectancy. Therefore careful design consideration of via size and pitch is required for reliability improvement. Also the bonding pad design is important for enhancing the reliability of TSV structure.

A Theoretical and Experimental Investigation on the Fatigue Strength and Fatigue Reliability Analysis of Concrete (콘크리트의 피로강도 및 피로신뢰성해석에 관한 이론 및 실험연구)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.113-119
    • /
    • 1985
  • The fatigue strength and reliability of concrete subjected to ftexural loading is investigate. The concrete beam specimens are prepared and tested in four-point flexural loading in which the bottom fiber stress varies from zero to a predetermined maximum stress. The S-N curves are generated from these test results and an equation is obtained by regression analysis to predict the flexural fatigue strength of concrete. A method is presented to perform the probabilistic analysis on the flexural fatigue of concrete. It is shown that the Weibull distribution has physically more convincing features and may be appropriate to describe the fatigue behavior of concrete.

  • PDF

A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron (구상흑연주철의 피로수명분포에 대한 통계적 해석)

  • Jang, Seong-Su;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2353-2360
    • /
    • 2000
  • Statistical fatigue properties of metallic materials are increasingly required for reliability design purpose. In this study, static and fatigue tests were conducted and the normal, log-normal, two -parameter Weibull distributions at the 5% significance level are compared using the Kolmogorov-Smirnov goodness-of-fit test. Parameter estimation were compared with experimental results using the maximum likelihood method and least square method. It is found that two-parameter Weibull distribution and maximum likelihood method provide a good fit for static and fatigue life data. Therefore, it is applicable to the static and fatigue life analysis of the spheroidal graphite cast iron. The P-S-N curves were evaluated using log-normal distribution, which showed fatigue life behavior very well.

A Stochastic Analysis in Fatigue Strength of Degraded Steam Turbine Blade Steel (열화된 증기 터빈블레이드의 피로강도에 대한 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.262-267
    • /
    • 2001
  • In this study, the Reliability of degraded steam turbine blade was evaluated using the limited fatigue data. The statistical estimation of limited fatigue data implies that some unknown uncertainties which may be involved in fatigue reliability analysis. Therefore, an appropriate distribution in the fatigue strength was determined by the characteristic distribution - linear correlation coefficient, fatigue physics, error parameter. 3-parameter Weibull distribution is the most appropriate distribution to assume for infinite region. The load applied on the blade is mainly tensile. The maximum Von-Mises stress is 219.4 MPa at the steady state service condition. The failure probability($F_p$) derived from the strength-stress interference model using Monte carlo simulation under variable service condition is 0.25% at the 99.99% confidence level.

  • PDF

Life Fatigue Prediction of an Accumulator Composed of Bladder and Housing (블래더와 하우징으로 구성된 축압기의 수명피로예측)

  • Kim, Daeyu;Lee, Geonhee;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.58-63
    • /
    • 2018
  • Recently in weapon systems development, the importance of reliability has been emphasized due to the increase in complexity and the rapid development of key components and components. Accordingly, the importance of lifespan testing is increased. However, lifespan testing to verify the reliability of a system is costly and takes a lot of time. Therefore in this paper, it was demonstrated that the most critical item of a bladder type accumulator is the bladder. Fatigue life is sensitive to temperature and pressure, with temperature having more impact. The fatigue life of the bladder was estimated to be 18,140 hr through fatigue analysis, which satisfies the required life expectancy of 10,000 hr.

A fuzzy residual strength based fatigue life prediction method

  • Zhang, Yi
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.201-221
    • /
    • 2015
  • The fatigue damage problems are frequently encountered in the design of civil engineering structures. A realistic and accurate fatigue life prediction is quite essential to ensure the safety of engineering design. However, constructing a reliable fatigue life prediction model can be quite challenging. The use of traditional deterministic approach in predicting the fatigue life is sometimes too dangerous in the real practical designs as the method itself contains a wide range of uncertain factors. In this paper, a new fatigue life prediction method is going to be proposed where the residual strength is been utilized. Several cumulative damage models, capable of predicting the fatigue life of a structural element, are considered. Based on Miner's rule, a randomized approach is developed from a deterministic equation. The residual strength is used in a one to one transformation methodology which is used for the derivation of the fatigue life. To arrive at more robust results, fuzzy sets are introduced to model the parameter uncertainties. This leads to a convoluted fuzzy based fatigue life prediction model. The developed model is illustrated in an example analysis. The calculated results are compared with real experimental data. The applicability of this approach for a required reliability level is also discussed.

The Design of Suction and Discharge Valve of Automotive Swash Plate Type Compressor (자동차용 사판식 압축기의 흡, 토출밸브 설계)

  • Lee, Geon-Ho;Kwon, Yun-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.13-18
    • /
    • 2006
  • This paper was studied to design Process considered flexibility and reliability of suction and discharge valves. Flexibility and reliability of valves are main important factors in compressor valves design. And they are incompatible with efficiency of compressor. In this study, we have performed the optimal design of CO2 compressor valves to consider these factors. At first, we analyzed performance simulation of compressor to obtain optimal flexibility level of valves. From this simulation, we could get some important data at valve design like the optimal natural frequency and the height of retainer. After that we studied to reliability of valves corresponding to optimal flexibility level by finite element method. For each case bending stress and natural frequency were obtained by it. Also we investigated the fatigue stability to obtain optimal valve shape that ensured to reliability.