• Title/Summary/Keyword: Fatigue Monitoring

Search Result 206, Processing Time 0.021 seconds

The Development of the Monitoring System for Power performance using the Lab View (LabView를 이용한 풍력발전 성능평가용 모니터링 시스템 개발)

  • Ko, Seok-Whan;Jang, Moon-Seok;Ju, Young-Chul;Lee, Yoon-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.69-74
    • /
    • 2009
  • Monitoring system is an absolutely-required system for assessing a performance and fatigue load of the wind turbine in an on-shore wind energy experimental research complex. It was implemented for the purpose of monitoring the wind information measured from a meteorological tower at the monitoring house, and of utilizing the measured data(fatigue data and electric analyzing data of wind turbine)for the performance assessment, by using the LabVIEW program. Then, by adding the performance assessment-related data acquired from the wind turbine during the performance assessment and the data recorder for synchronizing the data of meteorological tower, the system(BusDAQ) was implemented. Because it transmitted the data by converting the output 'RS-232' of data logger which measures the wind condition into CAN protocol, the data error rate was minimized. Also, This paper is introduced to make the best use of the developed monitoring system and to explain about construct of the system and detailed data communication of its system.

Realtime Detection of Damage in Composite Structures by Using PVDE Sensor (압전고분자 센서를 이용한 복합재 구조의 실시간 손상탐지)

  • ;Y. A. Dzenis
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.118-121
    • /
    • 2002
  • Polyvinylidene di-fluoride (PVDF) film sensor appeared to be practically useful for the structural health monitoring of composite materials and structures. PVDF film sensors were either attached to or embedded in the graphite/epoxy composite (CFRP) samples to detect the fatigue damage at the bondline of single-lap joints or the tensile failure of unidirectional laminates. PVDF sensors were sensitive enough to detect and determine the crack front in linear location since composites usually produce very energetic acoustic emission (AE). PVDF sensors are extremely cost-effective, as flexible as other plastic films, in low profile as thin as a few tens of microns, and have relatively wide-band response, all of which characteristics are readily utilized for the structural health monitoring of composite structures. Signals due to fatigue damage showed a characteristics of mode II (shear) type failure whereas those from fiber breakage at DEN notches showed that of mode I (tensile) type fracture.

  • PDF

Effects of the curing pressure on the torsional fatigue characteristics of adhesively bonded joints (경화 압력이 접착 조인트의 비틀림 피로 특성에 미치는 영향)

  • Hwang, Hui-Yun;Kim, Byung-Jung;Lee, Dae-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.196-201
    • /
    • 2004
  • Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no hole, add very little weight to the structure and have superior fatigue resistance. However, the fatigue characteristics of adhesive joints are much affected by applied pressure during curing operation because actual curing temperature is changed by applied pressure and the adhesion characteristics of adhesives are very sensitive to manufacturing conditions. In this study, cure monitoring and torsional fatigue tests of adhesive joints with an epoxy adhesive were performed in order to investigate the effects of the applied pressure during curing operation. From the experiments, it was found that the actual curing temperature increased as the applied pressure increased, which increased residual thermal stress in the adhesive layer. Therefore, the fatigue life decreased as the applied pressure increased because the mean stress during fatigue tests increased due to the residual thermal stress.

  • PDF

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).

Detecting Driver Fatigue by Steering Wheel Grip Force

  • LEE, KYEHOON;HYUN, SUNG-AE;OAH, SHEZEEN
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.44-48
    • /
    • 2016
  • Driver fatigue is a major cause of fatal road accidents and has significant implications in road safety. In recent years, researchers have investigated steering wheel grip force as an alternative method to detect driver fatigue noninvasively and in real time. In this study, a fatigue detection system was developed by monitoring the grip force and changes in the grip force were measured while participants' engaged in an interactive simulated driving task. The study also measured the participants' subjective sleepiness to ensure the validity of measuring grip force. The results indicated that while participants engaged in a driving task, steering wheel grip force decreased and subjective sleepiness increased concurrently over time. The possible applications of the driver fatigue detection system by steering wheel grip force and future guidelines are discussed.

A Study on Fatigue Crack Growth and Life Modeling using Backpropagation Neural Networks (역전파신경회로망을 이용한 피로균열성장과 수명 모델링에 관한 연구)

  • Jo, Seok-Su;Ju, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.634-644
    • /
    • 2000
  • Fatigue crack growth and life is estimated by various fracture mechanical parameters but affected by load, material and environment. Fatigue character of component without surface notch cannot be e valuated by above-mentioned parameters due to microstructure of in-service material. Single fracture mechanical parameter or nondestructive parameter cannot predict fatigue damage in arbitrary boundary condition but multiple fracture mechanical parameters or nondestructive parameters can Fatigue crack growth modelling with three point representation scheme uses this merit but has limit on real-time monitoring. Therefore, this study shows fatigue damage model using backpropagatior. neural networks on the basis of X-ray half breadth ratio B/$B_o$ fractal dimension $D_f$ and fracture mechanical parameters can predict fatigue crack growth rate da/dN and cycle ratioN/$N_f$ at the same time within engineering estimated mean error(5%).

Muscle Fatigue Analysis Based on Electromyography Signals for The Evaluation of Low-Level Laser Therapy (저출력 레이저의 치료 효과 규명을 위한 근전도 신호의 피로도 해석 연구)

  • Kim, Ji-Hyun;Choi, Hyo-Hoon;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.319-327
    • /
    • 2011
  • Skeletal muscle fatigue is defined as a 'any reduction in the maximal capacity to generate force or power output', and is the reduction of oxygen consumption and by-product of metabolism. For the muscle fatigue therapy, low level laser has been introduced that leads the mitochondrial respiratory and attributes the muscle fatigue recovery. This study analyzed the muscle fatigue signals from electromyography(EMG) during low-level laser therapy (LLLT). Healthy subjects performed voluntary elbow flexion-extension excercise and received placebo LLLT and active LLLT using a 830 nm laser diode. Then, EMG were measured for the evaluation of muscle fatigue. The acquired EMG data were analyzed with median frequency and short time fourier transform methods. The results showed that the LLLT had a significant symptomatic relief of muscle fatigue based on the EMG frequency analysis. Therefore, the muscle fatigue analysis with EMG signals can be applied to quantitative evaluation for the monitoring of LLLT effects.

Structural health monitoring of high-speed railway tracks using diffuse ultrasonic wave-based condition contrast: theory and validation

  • Wang, Kai;Cao, Wuxiong;Su, Zhongqing;Wang, Pengxiang;Zhang, Xiongjie;Chen, Lijun;Guan, Ruiqi;Lu, Ye
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.227-239
    • /
    • 2020
  • Despite proven effectiveness and accuracy in laboratories, the existing damage assessment based on guided ultrasonic waves (GUWs) or acoustic emission (AE) confronts challenges when extended to real-world structural health monitoring (SHM) for railway tracks. Central to the concerns are the extremely complex signal appearance due to highly dispersive and multimodal wave features, restriction on transducer installations, and severe contaminations of ambient noise. It remains a critical yet unsolved problem along with recent attempts to implement SHM in bourgeoning high-speed railway (HSR). By leveraging authors' continued endeavours, an SHM framework, based on actively generated diffuse ultrasonic waves (DUWs) and a benchmark-free condition contrast algorithm, has been developed and deployed via an all-in-one SHM system. Miniaturized lead zirconate titanate (PZT) wafers are utilized to generate and acquire DUWs in long-range railway tracks. Fatigue cracks in the tracks show unique contact behaviours under different conditions of external loads and further disturb DUW propagation. By contrast DUW propagation traits, fatigue cracks in railway tracks can be characterised quantitatively and the holistic health status of the tracks can be evaluated in a real-time manner. Compared with GUW- or AE-based methods, the DUW-driven inspection philosophy exhibits immunity to ambient noise and measurement uncertainty, less dependence on baseline signals, use of significantly reduced number of transducers, and high robustness in atrocious engineering conditions. Conformance tests are performed on HSR tracks, in which the evolution of fatigue damage is monitored continuously and quantitatively, demonstrating effectiveness, adaptability, reliability and robustness of DUW-driven SHM towards HSR applications.

Effects of Customer Violence Experiences, Protection Systems, and Monitoring Systems on the Subjective Health Status of Workers: Focusing on Salespersons and Electronic Machine Repairers (고객 폭력 경험, 보호제도, 모니터링제도가 근로자의 주관적 건강상태에 미치는 영향: 판매원과 전자제품수리원을 중심으로)

  • Jung, Myung-Hee;Lee, Bokim;Beak, Eun-Mi;Jung, Hye-Sun
    • Korean Journal of Occupational Health Nursing
    • /
    • v.30 no.4
    • /
    • pp.145-155
    • /
    • 2021
  • Purpose: The purpose of this study was to examine the effects of customer violence experiences, protection systems, and monitoring systems on the subjective health status of salespersons and electronic machine repairers. Methods: A total of 934 persons were sampled nationwide, including 582 salespersons and 352 electronic machine repairers, from March 2~30, 2020 and asked to fill out a self-reported questionnaire. Results: The findings show that electronic machine repairers were more exposed to customer violence and had a weaker protection system than salespersons. They also experienced severe control from management through a monitoring system. The regression analysis revealed that verbal violence had a negative impact on the subjective health status of electronic machine repairers (p=.021). A worker protection system had significant effects on the improved subjective health status of salespersons (p=.009). Depression and fatigue had negative impacts on the subjective health status of both salespersons (depression: p<.001, fatigue: p<.001) and electronic machine repairers (depression: p<.001, fatigue: p=.002). Conclusion: These findings put a greater emphasis on the need for worker protection systems to prevent workplace violence and a health promotion program to manage depression and fatigue in workplaces.