• Title/Summary/Keyword: Fatigue Life Test

Search Result 947, Processing Time 0.026 seconds

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

Fatigue Test of MEMS Device: a Monolithic Inkjet Print

  • Park, Jun-Hyub;Oh, Yong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.798-807
    • /
    • 2004
  • A testing system was developed to improve the reliability of printhead and several printheads were tested. We developed a thermally driven monolithic inkjet printhead comprising dome-shaped ink chambers, thin film nozzle guides, and omega-shaped heaters integrated on the top surface of each chamber. To perform a fatigue test of an inkjet printhead, the testing system automatically detects a heating failure using a Wheatstone bridge circuit. Various models were designed and tested to develop a more reliable printhead. Two design parameters of the width of reinforcing layer and heater were investigated in the test. Specially., the reinforcing layer was introduced to improve the fatigue life of printhead. The life-span of heater with a reinforcing layer was longer than that without a reinforcing layer. The wider the heater was, the longer the life of printhead was.

Tracked Vehicle Vibration Environmental Comparison using Fatigue Damage Spectrum (Fatigue Damage Spectrum을 이용한 궤도차량의 진동환경 비교)

  • 김재하;최병민;우호길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.191-197
    • /
    • 2000
  • This paper provides the test results of tracked vehicle at each driving condition and life cycle. Fatigue Damage Spectrum(FDS) has evaluated with the Power Spectrum Density(PSD) and the life time of equipment. Finally, provisional vibration qualification test level is evaluated.

  • PDF

Characteristics of Fatigue Crack Initiation and Fatigue Strength of Nitrided 1 Cr- 1Mo-0.25V Turbine Rotor Steels

  • Suh, Chang-Min;Hwang, Byung-Won;Murakami, Ri-Ichi
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1109-1116
    • /
    • 2002
  • To investigate the effect of nitriding layer on both fatigue crack initiation and fatigue life, turbine rotor steel ( IC.- 1Mo-0.25V steel) specimens were nitrided by the nitemper method and then put to a rotary bending fatigue test at room and elevated temperatures. In nitriding, temperature and time were controlled to obtain a different nitrided thickness. Microstructure analysis, micro-Victors hardness test, and scanning electron microscope observation were carried out for evaluating experiments. In results, the fatigue cracks of nitrided specimens were initiated at inclusion near the interface between nitrided layer and substrate, which showed fish-eye type appearance in fractograph. The fatigue life of nitrided specimens at every temperature was prolonged compared to that of the non-nitrided. However, there was not observable improvement in fatigue characteristics with the increase of a nitrided thickness.

Effect of Weld Improvement on the Corroded Fatigue Life of Welded Structures (용접구조물의 부식피로수명에 미치는 용접부 개선처리 효과)

  • Im, Sung-Woo;Chang, In-Hwa;Kim, Sang-Shik;Song, Ha-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.50-57
    • /
    • 2008
  • The effect of weld improvement on the corroded fatigue life of welded structures was investigated. Toe grinding, TIG dressing and weld profiling were used as the geometric improvement methods. Fatigue tests under the corroded condition in artificial seawater were carried out to investigate the corrosion fatigue behavior of API 2W Gr.50T steel plate produced by POSCO. The test results in weld improved conditions were compared with those in as-welded condition. The test results were also compared with the design curves in UK DEn Class F. Corroded fatigue life of weld improved specimens was longer than that of as-welded specimen. Especially, the corroded fatigue life exceeded the mean SN curve in air of UK DEn Class F.

Fatigue Life Prediction for Electric Railway Catenary wires (가선재의 피로수명 예측)

  • Kim, Yong-Ki;Chang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.558-567
    • /
    • 2003
  • The catenary wires are damaged by periodic running of train as well as repeated stress. The wires are also degraded by atmosphere corrosion at fields. Corrosion of wires increased surface roughness and deteriorated mechanical properties by providing fatigue crack initiation sited resulting in a bad effect on service life of the wires. Fatigue test of catenary wires performed to estimate service lifetime. Also, simulation to analyze stress on catenary wires was conducted through modelling the finite elements for dynamic behaviors of wires. Fatigue life of catenary wires was estimated with fatigue and simulation tests.

  • PDF

A Study on Fatigue Characteristic of Connecting Rod Material for Automobile (자동차용 커넥팅로드 소재의 피로특성에 관한 연구)

  • Kim, Hyun-Soo;Park, In-Duck;Kim, Chang-Hoon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.163-169
    • /
    • 2006
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases into 50-70% of the plain fatigue strength. The connecting rod for automobile has been used in special environments and various loading conditions. Failure of connecting rod in automotive engine may cause catastrophic situation. In this study, we investigated the fatigue characteristic of connecting rod material for an automobile. Fatigue life is defined as the number of cyclic stress to failure by regular cyclic stress. Fatigue life of C70S6 specimen was obtained from 134,000 to 147,000 cycles. Fatigue limit showed 432MPa by normal fatigue test. The other hands, it was 96MPa in the case of fretting fatigue test. It was extremely lower than that of a normal fatigue test. From observation of fracture surface, it was confirmed that the fatigue crack was initiated at the boundary of a specimen and bridge pad.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF