• 제목/요약/키워드: Fatigue Life Extension

검색결과 40건 처리시간 0.024초

비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가 (Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads)

  • 김태영;김태안;한승호
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.567-573
    • /
    • 2017
  • 자동차 부품 중 드라이브 샤프트는 엔진에서 발생하는 토크를 바퀴에 전달하는 동력 전달장치의 핵심 부품이다. 엔진에서 입력되는 비틀림 하중과 주행 중 발생하는 실동하중에 의한 부품의 파손을 방지하기 위해, 고주파 열처리로 강도 및 피로수명이 개선되고 있다. 본 연구에서는 고주파 열처리에 따른 드라이브 샤프트의 피로수명을 정량적으로 평가할 수 있는 피로수명 평가기법을 구축하였다. 드라이브 샤프트의 소재인 SAE10B38M2 강재로 모재 및 경화깊이가 서로 다른 고주파 열처리 시편 두 종을 제작하여 비틀림 하중 하에서의 전단 변형률 제어 피로시험을 진행하였고, 변형률-수명 피로수명 평가에 필요한 피로 물성값을 구하였다. 얻어진 피로 물성값을 이용하여 드라이브 샤프트의 변형률 기반 피로해석을 진행하였으며, 얻어진 피로수명 결과를 시제품 피로시험 결과와 비교하여 해석기법의 타당성을 검증하였다.

ASSESSMENT OF THERMAL FATIGUE IN MIXING TEE BY FSI ANALYSIS

  • Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.99-106
    • /
    • 2013
  • Thermal fatigue is a significant long-term degradation mechanism in nuclear power plants. In particular, as operating plants become older and life time extension activities are initiated, operators and regulators need screening criteria to exclude risks of thermal fatigue and methods to determine significant fatigue relevance. In general, the common thermal fatigue issues are well understood and controlled by plant instrumentation at fatigue susceptible locations. However, incidents indicate that certain piping system Tee connections are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentations. Therefore, in this study thermal fatigue evaluation of piping system Tee-connections is performed using the fluid-structure interaction (FSI) analysis. From the thermal hydraulic analysis, the temperature distributions are determined and their results are applied to the structural model of the piping system to determine the thermal stress. Using the rain-flow method the fatigue analysis is performed to generate fatigue usage factors. The procedure for improved load thermal fatigue assessment using FSI analysis shown in this study will supply valuable information for establishing a methodology on thermal fatigue.

T-50 항공기 유압조절 밸브 수명연장 방안 (A Study on Life Cycle Extension of T-50 Aircraft Hydraulic Control Valve)

  • 남용석;김태환;백승진;김승현;송석봉
    • 항공우주시스템공학회지
    • /
    • 제4권2호
    • /
    • pp.16-20
    • /
    • 2010
  • In General, the hydraulic system of T-50 Advanced Trainer is applied to flight control system, wheel & Brake system and fuel system for aircraft operation. The hydraulic system is operation with pressure of 3000psi. and many mechanical parts which is operated by hydraulic system has been stressed in incomplete environment same as heat and friction. for example, Oil leakage had occurred in the shutoff valve of FFP used in a certain period of time. After study, The crack progressed by fatigue due to the irregular hydraulic pressure and vibration has been identified as the reason of oil leakage. This paper presents life cycle extension plans of FFP shutoff valve by configuration improvements of shutoff valve and FFP hydraulic motor.

  • PDF

Dynamic crosswind fatigue of slender vertical structures

  • Repetto, Maria Pia;Solari, Giovanni
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.527-542
    • /
    • 2002
  • Wind-excited vibrations of slender structures can induce fatigue damage and cause structural failure without exceeding ultimate limit state. Unfortunately, the growing importance of this problem is coupled with an evident lack of simple calculation criteria. This paper proposes a mathematical method for evaluating the crosswind fatigue of slender vertical structures, which represents the dual formulation of a parallel method that the authors recently developed with regard to alongwind vibrations. It takes into account the probability distribution of the mean wind velocity at the structural site. The aerodynamic crosswind actions on the stationary structure are caused by the vortex shedding and by the lateral turbulence, both schematised by spectral models. The structural response in the small displacement regime is expressed in closed form by considering only the contribution of the first vibration mode. The stress cycle counting is based on a probabilistic method for narrow-band processes and leads to analytical formulae of the stress cycles histogram, of the accumulated damage and of the fatigue life. The extension of this procedure to take into account aeroelastic vibrations due to lock-in is carried out by means of ESDU method. The examples point out the great importance of vortex shedding and especially of lock-in concerning fatigue.

항공기 겹침이음 조립구조의 프레팅 피로수명 예측 (Prediction of Fretting Fatigue Life for Lap Joint Structures of Aircraft)

  • 권정호;주선영
    • 한국항공우주학회지
    • /
    • 제37권7호
    • /
    • pp.642-652
    • /
    • 2009
  • 항공기 주구조에 많은 부분은 겹침이음 형태의 조립구조이며 이러한 구조는 프레팅 손상으로 인해 단순피로에 비해 현저히 수명이 감소된다. 특히 노후 항공기의 경우 프레팅 피로균열은 감항안전을 저해하는 중요한 요인으로 최근 대두된 수명연장 문제와 관련해서도 손상허용성 평가에 프레팅 피로수명 예측이 필수적으로 요구되고 있다. 이러한 배경으로 본 연구에서는 볼트 체결력이 서로 다른 겹침이음 구조시편에 대하여 일련의 프레팅 피로시험을 수행하고 탄소성 접촉응력 유한요소해석 결과로부터 프레팅 파라미터를 구하고 균열발생 및 성장 수명예측 모델식과 최근 제안된 수정 모델식을 통하여 프레팅 피로수명을 예측하였다. 또한 시험결과와 비교분석함으로써 실제 항공기 겹침이음 구조에 프레팅 피로수명 예측 모델식의 적용 유효성을 고찰하였다.

Fatigue Evaluation on the Inside Surface of Reactor Coolant Pump Casing Weld

  • Kim, Seung-Tae;Park, Ki-Sung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.795-801
    • /
    • 1998
  • Metallic fatigue of Pressurized Water Reactor(PWR) materials is a generic safety issue for commercial nuclear power plants. It is very important to obtain the fatigue usage factor for component integrity and life extension. In this paper, fatigue usage was obtained at the inside surface of Kori unit 2, 3 and 4 RCP casing weld, based on the design transient. And it was intended to establish the procedure and the detailed method of fatigue evaluation in accordance with ASME Section III Code. According to this code rule, two methods to determine the stress cycle and the number of cycles could be applied. One method is the superposition of cycles of various design transients and the other is based on the assumption that a stress cycle correspond to only one design transient. Both method showed almost same fatigue usage in the RCP casing weld.

  • PDF

노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향 (The Effects of Segmental Instability and Muscle Fatigue after Applying Sabilization Exercise Program In Degenerated Disc Disease Patients of Aged)

  • 김희라
    • 대한정형도수물리치료학회지
    • /
    • 제13권2호
    • /
    • pp.12-20
    • /
    • 2007
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after applying program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, (-) value was increased between lumbar vertebra segment when was the load on spine. And so applying stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

동조질량감쇠기를 장착한 강합성형 고속철도교의 피로신뢰성 평가 (Fatigue Reliability Evaluation of Steel-Composite High-Speed Railway Bridge with Tuned Mass Damper)

  • 강수창;서정관;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제9권5호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 연구에서는 고속철도 강합성형 교통비 동적해석에 기반한 피로신뢰성평가 기법을 제시하고 동조질량감쇠기의 효과를 피로수명연장 측면에서 검토하였다. 피로 신뢰성 평가를 수행하기 위하여 S-N 곡선 및 선형누적손상이론을 이용하여 한계상태식을 설정하였다. 열차 속도와 교량 감쇠비의 불확실성을 고려하여 교량에 대한 반복적인 동적해석을 수행하고, 이 결과로부터 전체 교량수명동안에 교량이 받는 피로 손상도와 연관된 확률변수의 특성을 통계적으로 추정하였다. 최종적으로 결정된 확률변수와 한계상태식에 개선된 일계이차모멘트법(AFOSM)을 적용하여 피로 신뢰도 지수를 산정하였다. 40m 지간 강합성교량의 수치모사로부터 동조질량감쇠기 장착여부에 따라 피로 신뢰도 지수를 평가하고 그 결과를 제시하였다.

피로수명 연장을 위한 항공기 프레임 노치부위 국부형상 최적설계 (Local Shape Optimization of Notches in Airframe for Fatigue-Life Extension)

  • 원준호;최주호;강진혁;안다운;윤기준
    • 대한기계학회논문집A
    • /
    • 제32권12호
    • /
    • pp.1132-1139
    • /
    • 2008
  • The aim of this study is to apply shape optimization technique for the repair of aging airframe components, which may extend fatigue life substantially. Free-form optimum shapes of a cracked part to be reworked or replaced are investigated with the objective to minimize the peak local stress concentration or fatigue-damage. Iterative non-gradient method, which is based on an analogy with biological growth, is employed by incorporating the robust optimization method to take account of the stochastic nature of the loading conditions. Numerical examples of optimal hole shape in a flat plate are presented to validate the proposed method. The method is then applied to determine the reworked or replacement shape for the repair of a cracked rib in the rear assembly wing body of aircraft.

원전 운전환경을 고려한 주기기 피로 건전성 상세평가 절차개발 및 적용 (Development and Application of Detailed Procedure to Evaluate Fatigue Integrity for Major Components Considering Operating Conditions in the Nuclear Power Plant)

  • 김병섭;김태순
    • 한국안전학회지
    • /
    • 제21권6호
    • /
    • pp.20-25
    • /
    • 2006
  • In the design of class 1 components to apply ASME code section III NB, a fatigue is considered as one of the important failure mechanisms. Fatigue analysis procedure and standard fatigue design curve(S-N curve) is suggested in ASME code, which had to be performed to meet the integrity of components at the design step. As the plant life extension for operating power plants and the long-lived plant design, however, are being progressed, the fact which the existing ASME fatigue design curve can not consider fatigue effects sufficiently comes to the fore. To find the technical solution for these problems, a number of researches and discussion are continued up to now. In this study, the detailed fatigue analyses using the 3 dimensional modeling for the fatigue-weakened components were performed to develop the optimized fatigue analysis procedure and their results are compared with other reference solutions.