• Title/Summary/Keyword: Fatigue Fracture Crack Surface

Search Result 217, Processing Time 0.025 seconds

Effects of Acid Fog Environment on the Corrosion Fatigue Strength of Structural Steel SM55C (기계구조용강 SM55C의 부식피로강도에 미치는 산성안개 분위기의 영향)

  • 김진학;김민건
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.181-187
    • /
    • 2000
  • Fatigue tests under acid fog environment were carried out to investigate the effect of acid fog on the corrosion fatigue strength of SM55C in comparison with distilled water. Main results obtained are as follows. The fatigue strength of SM55C under acid fog environment are remarkably decreased as compared with that of distilled water specimen. The corrosive effect of acid fog on fatigue strength are more serious under low stress amplitude level than under high stress amplitude level, and this leads to continuous reduction of fatigue strength. Under acid fog environment in early stage of crack growth. because the corrosive components dissolve the crack face offensively. the unstable fracture surface appears. But, the stable corrosion precipitation and products layer are formed on the fracture surface in accordance with the time pass.

  • PDF

A Numeric Modelling Technique for the Shape Development of Fatigue Crack (피로 균열 형상 진전의 수치 모델링 기법에 관한 연구)

  • Han, Moon-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.225-233
    • /
    • 1999
  • This paper describes a versatile finite element technique which has been used to investigate of wide range of structural defects of practical importance. The procedure automatically remeshes the three-dimensional finite element model during the stages of crack growth. Problems analyzed to date include the surface cracks in leak-before-break situations, the development of quarter-elliptical corner defects, planar semi-elliptical surface defects and the fatigue growth of defects.

  • PDF

Effect of Corrosion on Fatigue Life of Piping material under Repeating Load (반복하중을 받는 배관용 강재의 피로수명에 미치는 부식의 영향)

  • Park, Keyung-Dong;An, Jae-Pil
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.228-229
    • /
    • 2005
  • The compressive residual stress, which is induced by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, it was not known that the effect of shot peening in corrosion environment. In this study, the effect of shot peening on corrosion fatigue crack growth of sping steel immersed in 6% $FeCl_3$ solution and corrosion characteristics with considering fracture mechanics. The results of the experimental study corrosion fatigue characteristics of spring steel are as follows; the fatigue crack growth rate of the shot peening material was lower than of the un peening material. And fatigue life shows more improvement in the shot peening material than un peening material. This is because the compressive residual stress of surface operate resistance of corrosion fatigue crack propagation. It is assumed that the shot peening process improve corrosive resistance and mechanical property.

  • PDF

A Study on the Corner Crack Propagation by Plane Bending Fatigue in Butt Welded Joints of Steel (平面굽힘 疲勞荷重 에 의한 鋼熔接部 의 모서리균열 傳파特性)

  • 김영식;조상명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.232-238
    • /
    • 1982
  • The behavior of corner crack propagation by unidirectional plane bending fatigue was investigated in the butt welded joints of SS41 and SM50 steel plates including an edge through-thickness notch. The properties of fatigue crack propagation were inspected in the weld metal, heat-affected zone, and base metal of the welded joints. Main results obtained are as follows; (1) When a plate with an edge through-thickness notch is loaded by plane bending fatigue in indirection, the 2 variant corner cracks on the upper and lower edge of the plate are initiated and propagated respectively from the notch. (2) In case of a specimen containing a corner crack, it is more reasonable to estimate the crack propagation rate by area of fracture surface than by crack surface length. (3) The rate of fatigue crack propagation becomes faster in the following order; weld metal, heat-affected zone, and base metal. (4) The specimen including reinforcement shape is rapidly failed throughout bond due to effect of its shape when the repeated load exceeds a certain cycle.

Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates (마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰)

  • Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

A Study on Prediction of Stress Intensity Factor and Fatigue Crack Growth Behavior Using the X-ray Diffraction Technique (X-선 회절을 이용한 피로균열진전거동과 응력확대계수 예측에 관한 연구)

  • Lim, Man-Bae;Boo, Myung-Hawn;Kong, Yu-Sik;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.673-680
    • /
    • 2003
  • This study verified the relationship between fracture mechanics parameters(ΔK, ΔK$\sub$eff/, K$\sub$max/) and X-ray parameters (${\alpha}$$\sub$r/, B) for SG365 steel at elevated temperature up to 300$^{\circ}C$. The fatigue crack propagation test were carried out and X-ray diffraction technique according to crack length direction was applied to fatigue fractured surface. The residual stress on the fracture surface was found to increase low ΔK region, reach to a maximum value at a certain value of K$\sub$max/ or ΔK and then decrease. Residual stress were independent on stress ratio by arrangement of ΔK and half value breadth were independent by the arrangement of K$\sub$max/. The equation of ${\alpha}$$\sub$r/ - ΔK was established by the experimental data. Therefore, tincture mechanics parameters could be estimated by the measurement of X-ray parameters.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Initiation and Growth Behavior of Small Surface Fatigue Crack in SiC Reinforced Aluminum Composite (SiC 강화 알루미늄기 복합재료의 표면미소 피로균열 발생 및 진전 거동)

  • Lee, Sang-Hyoup;Choi, Young-Geun;Kim, Sang-Tae
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.74-81
    • /
    • 2009
  • Reversed plane bending fatigue tests were conducted on SiC particle reinforced and SiC whisker reinforced aluminum composite. The initiation and growth behaviors of small surface fatigue cracks were continuously monitored by the replica technique and the causes of fracture and fracture mechanism were investigated by SEM. The relationship between da/dn and $K_{max}$ show that da/dn increases in high stress level while decrease and again increases with increasing of $K_{max}$ in low stress level for two materials.

Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition (PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구)

  • Jeong, Ill-Seok;Lee, Yong-Sung;Kim, Sang-Jai;Song, Taek-Ho;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF

Crack growth behavior of fatigue surface crack initiated from a small surface defect (작은 表面缺陷에서 發생.成長하는 表面疲勞균열의 成長特性에 관한 硏究)

  • 서창민;권오헌;이정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.191-197
    • /
    • 1987
  • It has been well known that the fracture mechanics can be applied to large through crack growth. But the growth rate of small surface cracks initiated from a small defect under rotary bending fatigue tests can not be treated as a function of stress intensity factor range. In this paper, to investigate the growth behavior of surface small fatigue cracks in the view-point of both fracture mechanics and strength of materials, the fatigue test has been carried out on two kinds of plain carbon steels with a small surface defect. Applying the concept of the cyclic strain intensity factor range .DELTA. $K_{\epsilon}$/$_{t}$ to the analysis of small surface fatigue crack growth, it is found that the relationship between cyclic strain intensity factor range and crack growth rate shows linear relation on logarithmic coordinates regardless of defect sizes and two kinds of carbon steels.s.s.