• Title/Summary/Keyword: Fatigue Damage Evaluation

Search Result 210, Processing Time 0.026 seconds

Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 용접구조물의 수치피로시험기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Yoo, Byung-Moon;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

Fatigue Strength Evaluation of LCV Leaf spring Considering Road Load Response II (도로 하중조건을 고려한 상용차 판스프링의 피로강도 평가 II)

  • Sohn, Il-Seon;Bae, Dong-Ho;Jung, Won-Seok;Jung, Won-Wook;Park, Sun-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1127-1132
    • /
    • 2003
  • Suspension system of vehicle have enough endurance during its life time to protect passenger. Spring is one of major part of vehicle. Thus, a fatigue strength evaluation for leaf spring based on road load response was carried out. At first, strain of leaf spring is measured on the city condition and proving ground condition. And next, the damage analysis of road load response data was carried out. And fatigue test of leaf spring were also carried out. Based on -N life relation, fatigue life of leaf spring was evaluated at belgian mode, city mode and drawing test specification. After that, it is compared the design life of leaf spring and evaluated fatigue life by belgian mode, city mode and drawing test specification. From the above, the maximum load-fatigue life relation of leaf spring was defined by test. and new test target of belgian mode and city mode was proposed to accept design specification of leaf spring. It is expect that proposed test target can verify leaf spring fatigue endurance at specific road condition.

  • PDF

Development of Green's Functions for Fatigue Damage Evaluation of CANDU Reactor Coolant System Components (CANDU형 원전 주요기기의 피로손상 평가를 위한 그린함수 개발)

  • Kim, Se Chang;Sung, Hee Dong;Choi, Jae Boong;Kim, Hong Key;Song, Myung Ho;Nho, Seung Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.38-43
    • /
    • 2011
  • For the efficient and safe operation of nuclear power plant, evaluating quantitatively aging phenomenon of major components is necessary. Especially, typical aging parameters such as stresses and cumulative usage factors should be determined accurately to manage the lifetime of the plant facility. The 3-D finite element(FE) model is generated to calculate the aging parameters. Mechanical and thermal transfer functions called Green's functions are developed for the FE model with standard step input. The stress results estimated from transfer functions are verified by comparing with 3-D FE analyses results. Lastly, we suggest an effective fatigue evaluation methodology by using the transfer functions. The usefulness of the proposed fatigue evaluation methodology can be maximized by combining it with an on-line monitoring system.

Hot spot stress approach for Tsing Ma Bridge fatigue evaluation under traffic using finite element method

  • Chan, T.H.T.;Zhou, T.Q.;Li, Z.X.;Guo, L.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.261-279
    • /
    • 2005
  • The hot spot stress approach is usually adopted in the fatigue design and analysis of tubular welded joints. To apply the hot spot stress approach for fatigue evaluation of long span suspension bridges, the FEM is used to determine the hot spot stress of critical fatigue location. Using the local finite element models of the Tsing Ma Bridge, typical joints are developed and the stress concentration factors are determined. As a case for study, the calculated stress concentration factor is combined with the nominal representative stress block cycle to obtain the representative hot spot stress range cycle block under traffic loading from online health monitoring system. A comparison is made between the nominal stress approach and the hot spot stress approach for fatigue life evaluation of the Tsing Ma Bridge. The comparison result shows that the nominal stress approach cannot consider the most critical stress of the fatigue damage location and the hot spot stress approach is more appropriate for fatigue evaluation.

A Study on the Fatigue Strength of the Welds of Membrane Type LNG Tank (멤브레인 방식 LNG탱크 용접부의 피로강도에 관한 연구)

  • 김종호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.542-548
    • /
    • 1997
  • In this study an evaluation method of fatigue strength of membrane type LNG tank is presented with FEM analysis and experimental approach of seam and raised edge welds. The study contains the following : l)FEM analysis of test specimens 2)Fatigue tests of seam and raised edge welds 3)Estimation of cumulative damage factor of the welds on the basis of safe life design concept complying with the rules of classification society 4)Review of the effect of mean stress on the fatigue strength 5)Modelling of fatigue life of the welds which is changeable by weld heights With the results obtained in this study, a model ${\Delta}{\delta}/h^2=0.13553\;{N_{f}}^{-0.3151}$ for seam and raised edge welds having a given weld height is proposed to be useful for designers and inspectors.

  • PDF

Evaluation of Creep-Fatigue Damage of KALIMER Reactor Internals Using the Elastic Analysis Method in RCC-MR

  • Koo, Gyeong-Hoi;Bong Yoo
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.566-584
    • /
    • 2001
  • In this paper, the progressive deformation and the creep-fatigue damage for the conceptually designed reactor internals of KALIMER(Korea Advanced Liquid MEtal Reactor) are carried out by using the elastic analysis method in the RCC-MR code for normal operating conditions including the thermal load, seismic load (OBE) and dead weight. The maximum operating temperature of this reactor is 53$0^{\circ}C$ and the total service lifetime is 30 years. Thus, the time- dependent creep and stress-rupture effects become quite important in the structural design. The effects of the thermal induced membrane stress on the creep-fatigue damage are investigated with the risk of the elastic follow-up. To calculate the thermal stress, detailed thermal analyses considering conduction, convection and radiation heat transfer mechanisms are carried out with the ANSYS program. Using the results of the elastic analysis, the progressive deformation and creep-fatigue damages are calculated step by step using the RCC-MR in detail. This paper ill be a very useful guide for an actual application of the high temperature structural design of the nuclear power plant accounting for the time-dependent creep and stress-rupture effects.

  • PDF

Sensitivity study for important parameters of VIV fatigue evaluation of SCR

  • Lee, Sung-Je;Kang, Chanhoe;Jang, Changhwan;Park, Sung-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 2017
  • Since risers have to be operated without being replaced during the design life time after installation, fatigue evaluation as well as strength analysis should be performed. The fatigue life of the riser is known to be dominantly influenced by wave loading and vortex induced vibration (VIV) phenomena. The fatigue life evaluation method and the behavior characteristics of the riser by the wave have been done a lot. Even though the VIV is an important source of fatigue damage for SCR, the evaluation method and behavior characteristics by VIV have not been studied relatively. Most of the S / W for calculating VIV fatigue are a semi-empirical model based on various theoretical models and experiments. For better understanding of VIV response, it is necessary to investigate the effect of parameters which affects the analysis result. This paper summarizes the results of parametric study performed to enhance the understanding of relationship between each parameter and fatigue analysis result.

Fatigue Strength Evaluation of Bogie Frame of Urban Maglev Train (도시형 자기부상열차 대차 프레임의 피로강도 평가)

  • Han, Jeong Woo;Kim, Heung Sub;Bang, Je Sung;Song, See Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • This study evaluated the fatigue strength of the bogie frame of an urban maglev train through fatigue analysis, cumulative damage, and fatigue tests based on a proposed fatigue evaluation method. The results of FEM analysis in which various load combinations were adopted showed that all data were under the fatigue limit of a butt welded joint made of A6005 in a Goodman diagram. The cumulative fatigue damage was calculated at the highest level from a bolt connecting the area of the electromagnetic pole in the casting block; however, the total sum was evaluated as D=0.808 based on $1{\times}10^7$ cycles, which indicates that it did not exceed the failure criteria. In addition, the results of the fatigue testshowed that there was no crack at any position in the bogie frame, which corresponded to the results of fatigue analyses.

The Evaluation of Fretting Fatigue Behavior on Rotary Bending Fatigue for Railway Axle Material (회전굽힘 피로 하에서의 철도 차축재료 프레팅 피로거동 평가)

  • Choi, Sung-Jong;Kwon, Jong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.74-82
    • /
    • 2010
  • Fretting damage can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these test, the following results are obtained: 1) it is found that the fretting fatigue limit of standard specimen decreased about 37% compared to the plain fatigue limit. 2) The early crack of Shinkansen type specimens initiated in contact area and final fractured below samp=214 MPa. 3) The early crack of all TGV type specimens initiated in rounded area and fractured. 4) Tire tracks and rubbed scars were observed in the oblique crack region and fatigue crack growth region of fracture surface. 5) The wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

Developing a Standardized Patient Program using Internal Damage Fever Cases in Korean Medical Education (한의학 교육에서 내상발열(內傷發熱) 증례를 이용한 표준화환자 프로그램 개발 연구)

  • Jo, Hak-jun;Jo, Na-young
    • Journal of Korean Medical classics
    • /
    • v.33 no.4
    • /
    • pp.33-56
    • /
    • 2020
  • Objectives : The objective of this paper is to develop a standardized patient program with a focus on diagnosis and treatment of internal damage fever in Korean Medical education. Methods : First, cases of diagnosis and treatment of internal damage fever were collected from various classical texts, then a module was developed according to pre-existing standardized patient program's protocols based on selected cases. Careful consideration was given to developing evaluation criteria on history taking and physical examination that are necessary to accurately differentiating the 9 types. Results : Nine types of differentiation models on internal damage fever were selected, which are qi deficiency from overexertion/fatigue and famish; blood deficiency from overexertion/fatigue, famish and fullness; fire stagnation from excessive eating and cold foods; food damage; yang deficiency; yin deficiency; phlegm; stagnated blood; liver qi stagnation. For each type, evaluation criteria in regards to history taking, physical examination, communication with patient, and patient education were developed. Conclusions : When developing a standardized patient program using internal damage fever cases, it would better reflect the characteristics of Korean Medicine in clinical education of Korean Medicine if the program is based on classical texts. It would also be useful in evaluating students' graduation competence in exams such as CPX.