• Title/Summary/Keyword: Fat replacer

Search Result 53, Processing Time 0.033 seconds

The Quality Improvement of Emulsion-type Pork Sausages Formulated by Substituting Pork Back fat with Rice Bran Oil

  • Yum, Hyeon-Woong;Seo, Jin-Kyu;Jeong, Jin-Yeon;Kim, Gap-Don;Rahman, M. Shafiur;Yang, Han-Sul
    • Food Science of Animal Resources
    • /
    • v.38 no.1
    • /
    • pp.123-134
    • /
    • 2018
  • The effects of pork back fat (PBF) substitution with various concentrations of rice bran oil (RBO) (50%, 45%, 40% and 35%) on the physicochemical characteristics and sensory attributes of emulsion-type pork sausages were studied. The modified pork sausages were compared with control sausages produced using PBF only. The sausages with RBO had significantly lower (p<0.05) moisture content than the control sausages. Sausages made from PBF substituted with 40% RBO showed the lowest cooking loss. Substitution of PBF with RBO had no significant effect on the emulsion stability of pork sausages. All sausages with RBO showed significantly lower (p<0.05) hardness values than control sausages. Sausages with RBO also had significantly higher values (p<0.05) of unsaturated fatty acid and polyunsaturated to saturated fatty acid contents than the controls. RBO substitution had no effect on the flavor intensity of sausages, but it improved the tenderness and produced a softer texture.

Effect of Bovine Plasma Protein Hydrolysates on the Quality Properties of Cooked Pork Patty

  • Seo, Hyun-Woo;Seo, Jin-Kyu;Yeom, Hyeon-Woong;Yang, Han-Sul
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.155-165
    • /
    • 2016
  • The study investigated the effects of adding bovine plasma protein(PP) hydrolysates on the quality properties of cooked pork patties. Pork patties were prepared as follows: manufactured with pork back-fat(control); replacement of back-fat with 40% olive oil(T1), 40% olive oil and 2% PP hydrolysates(T2), and 40% olive oil and 4% PP hydrolysates(T3). The olive oil modified the fatty acid profiles of the pork patties by lowering the saturated fatty acids(SFAs) percentage. Olive oil and 4% PP hydrolysates addition reduced the level of 2-thiobarbituric acid-reactive substance(TBARS) values in pork patties, compared to the controls. Furthermore, the pork patties with added PP hydrolysates had higher pH values than the control. All samples containing olive oil and PP hydrolysates had increased levels of DPPH radical scavenging activity. In particular, added PP hydrolysates were more effective in increasing antioxidant activity than were the other treatments. Therefore, PP hydrolysates could be used as a natural antioxidative in cooked pork patties.

Effects of Replacing Backfat with Fat Replacers and Olive Oil on the Quality Characteristics and Lipid Oxidation of Low-fat Sausage During Storage

  • Moon, Sung-Sil;Jin, Sang-Keun;Hah, Kyung-Hee;Kim, Il-Suk
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.396-401
    • /
    • 2008
  • Effects of replacing pork backfat with a combination (ICM) of isolated soy protein (ISP), carrageenan, and maltodextrin, or with ICM +olive oil, on the quality characteristics of sausages were investigated. Both treatments had lower fat content (p<0.05), but higher protein and moisture contents than the control (p<0.05). The fat content of low-fat sausage containing the ICM was increased on day 30 compared to day 1 and 15 (p<0.05), and that of ICM+olive oil was increased after day 15. The water holding capacity of ICM was lower than the control through day 30 (p<0.05). The ICM+olive oil had a lower cooking loss than ICM on day 1 and 15 (p<0.05). On day 1, the ICM had lower lightness and higher redness values than the control (p<0.05), and the ICM+olive oil had a higher yellowness value than the control and ICM (p<0.05). Both treatments presented higher hardness, cohesiveness, gumminess, and chewiness values than the control (p<0.05). The lipid oxidation values of both treatments were lower than the control on day 15 and 30 (p<0.05), and those were affected by the addition of olive oil. The ICM was rated higher for sensory color and overall acceptability than the ICM+olive oil (p<0.05).

An Approach to Manufacture of Fresh Chicken Sausages Incorporated with Black Cumin and Flaxseed Oil in Water Gelled Emulsion

  • Kavusan, Hulya Serpil;Serdaroglu, Meltem;Nacak, Berker;Ipek, Gamze
    • Food Science of Animal Resources
    • /
    • v.40 no.3
    • /
    • pp.426-443
    • /
    • 2020
  • In order to investigate the use of oil in water gelled emulsion (GE) prepared with healthier oil combinations as beef fat replacer in the fresh chicken sausage formulations, four batches of fresh sausages were produced. The first batch was control (C) sample formulated with %100 beef fat, other batches were codded as GE50, GE75, and GE100 respective to the percentage of beef fat replaced with GE. The addition of GE to sausage formulation resulted in an increment in moisture and protein contents while a decrement was observed in fat content (p<0.05). pH, cooking yield and water holding capacity values of GE added samples were found lower than C (p<0.05). GE addition caused lower CIE L* values in samples, however, this trend was not observed in CIE a* and CIE b* values. Initially, the lowest peroxide and the highest TBARS values were recorded in GE100 samples on the 0th d (p<0.05). Peroxide and TBARS values were in the limits. The texture of samples was softened while total saturated fatty acid content reduced up to 52.61% with the incorporation of GE (p<0.05). Taken together, our results showed that GEs can be used as fat replacers in meat product formulations without causing undesirable quality changes.

New Approaches to Production of Turkish-type Dry-cured Meat Product "Pastirma": Salt Reduction and Different Drying Techniques

  • Hastaoglu, Emre;Vural, Halil
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.224-239
    • /
    • 2018
  • In this study, the possible changes in the quality characteristics of pastirma, Turkish-type dry-cured meat product, produced by using two different salts (NaCl-KCl) in a curing mixture and two different production techniques (natural and controlled condition) were examined. Moisture, pH, salt, sodium, potassium, TBA, fat, water activity, instrumental colour, texture, and sensory analyses were implemented in order to determine the possible effects of these applications. Fat, aw, pH, colour, tiobarbituric acid (TBA), texture, salt, Na and K values may allow these desired modifications in pastirma production to be limited. The substitution of 15% KCl instead of NaCl was acceptable in terms of the sensorial properties of the pastirma. However, the sensory analyses did not allow for using a higher KCl instead of NaCl because both the hardness and chewiness in the texture of the pastirma samples salted with 30% of KCl were not scored positively. Besides this, negative effects, which may occur during the pastirma production under natural conditions, can be eliminated by the production being under controlled conditions.

Quality Characteristics of Low-Fat Plant Oil Emulsion Pork Patties (식물성유 유화물로 대체한 저지방 돈육 패티의 품질 특성)

  • Choi, Young-Joon;Lee, Si-Hyung;Lee, Kyoung-Sook;Choi, Gang-Won;Lee, Kyung-Soo;Jung, In-Chul;Shim, Dong-Wook
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1351-1357
    • /
    • 2019
  • This study investigated the effect of plant oil emulsion as a replacement for animal fat on the quality characteristics of low-fat pork patties. Pork patties were manufactured using a pork fat control (CON) and olive (OPP), soybean (SPP), and canola (CPP) oil emulsions. Replacing animal fat with the plant oil emulsions increased the moisture content and decreased the fat content of the patties as compared to those with pork fat. The water holding capacity and cooking yield, and the moisture and fat retention of the patties were significantly increased, and the diameter reduction and shrinkage ratio decreased with the plant oil replacements. The color parameters of the samples were affected by the addition of the plant oil emulsions, and higher L* and a* values were observed in CON. The b* value of the raw pork patty was highest in OPP, and palmitic acid was the most abundant saturated fatty acid. In terms of unsaturated fatty acids, oleic acid was highest in CON, OPP, and CPP, and linoleic acid was highest in SPP. Hardness, cohesion, and chewiness were no different among the samples, although higher springiness was observed in the pork patties with added plant oil emulsions. The taste, flavor, and palatability of the OPP and CPP patties were higher than in the CON and SPP groups. Fat replacement with plant oil emulsion therefore had a positive effect on the quality characteristics of the pork patties, and due to reduced saturated fatty acids, the end-product provides the healthy low-fat option desired by consumers.

Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages

  • Uzlasir, Turkan;Aktas, Nesimi;Gercekaslan, Kamil Emre
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.551-562
    • /
    • 2020
  • Beef fat was replaced with cold press pumpkin seed oil (PSO; 0%, 5%, 15%, and 20%) in the production of bologna-type sausages. A value of pH, water-holding capacity (WHC), jelly-fat separation, emulsion stability and viscosity values were determined in meat batters. Thiobarbituric acid reactive substances (TBARS), color, and textural characteristics (TPA, shear test, penetration test) were determined in end-product at 1, 7, 14, 21, and 28 days of storage at 4℃. The pH values were varied between 6.06 and 6.08. With the increase in the level of PSO in meat batters, there was a significant increase in WHC, jelly-fat separation and viscosity values (p<0.05) while a significant decrease in emulsion stability (p<0.05). TBARS values of sausages were found to be significantly higher than in the control group (p<0.05), and this trend continued during storage. Increasing of PSO level were caused a significant increase in L* and b* values while a decrease in a* value (p<0.05). Hardness, adhesiveness and chewiness values were significantly reduced whereas cohesiveness and resilience values increased (p<0.05). Maximum shear force and work of shear was significantly decreased as the level of PSO increased (p<0.05). Hardness, work of penetration and the resistance during the withdrawal of the probe values (penetration tests) increased significantly with the increase in the level of PSO (p<0.05). These results indicate that PSO has potential to be use as a replacement of animal-based fats in the production of bologna-type sausages.

Impact of different levels of lactose and total solids of the liquid diet on calf performance, health, and blood metabolites

  • Gercino Ferreira Virginio Junior;Cecile Anna Jeanne Duranton;Marilia Ribeiro de Paula;Carla Maris Machado Bittar
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1031-1040
    • /
    • 2024
  • Objective: This study aimed to evaluate the effect of feeding milk replacer (MR) with varying levels of lactose and the increased supply of total solids (from 750 to 960 g/d) on performance, blood metabolites, and health of Holstein male calves during the preweaning period. Methods: Forty newborn Holstein calves (10 per treatment) were blocked according to birth weight and date of birth and distributed in a randomized block design to different liquid diets: Whole milk powder (WMP) diluted to 125 g/L solids; MR with 48% lactose (48L), diluted to 125 g/L solids; MR with 53% lactose (53L), diluted to 125 g/L solids; 53L MR corrected to 160 g/L solids (16TS) by the inclusion of a solid corrector. Calves were individually housed in wood hutches, fed 6 L/d of the liquid diet, and had free water and starter concentrate access. The study lasted 56 days. Results: Liquid diet intake was higher for calves fed 16TS than for other treatments. Calves fed 16TS presented higher protein and fat intake, followed by those fed WMP and the 48L or 53L MRs. Lactose intake was higher for 16TS-fed calves, followed by 53L, 48L, and WMP-fed calves. Starter and total dry matter intake did not differ among liquid diets. The average daily gain was higher for 16TS than 48L-fed calves, with the other treatments being intermediary. The lowest feed efficiency was observed for calves fed 48L. No effects on health were observed, as well as on selected blood metabolites, except for albumin concentration, which was higher for calves fed 16TS and WMP. Conclusion: Higher total solids content (160 g/L) in MR increases nutrient intake and consequently improves the performance of dairy calves. Feeding MRs with levels of lactose up to 53% of the DM had no deleterious effect on the performance or health of the calves.

Evaluation of High Molecular Weight of Chitosan as a Replacer of Sodium Nitrite on the Physico-Chemical Properties and Microbial Changes of Low-fat Sausages During Refrigerated Storage (아질산염의 대체제로 고분자 키토산의 첨가가 저지방 소시지의 냉장 저장 중 이화학적 성상 및 미생물의 변화에 미치는 영향)

  • 진구복;오미영;박성용
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.563-574
    • /
    • 2006
  • This study was performed to investigate if high molecular weight(~200kDa) of chitosan can be a potential possibility to replace with the sodium nitrite in low-fat sausages. pH, proximate analysis, Hunter color values, vacuum purge, expressible moisture(EM, %), texture profile analysis(TPA), shelf-life effect were measured. No differences in physico-chemical properties were observed between controls and chitosan treatments(p>0.05). Since Hunter-a-values(redness) were reduced with the addition of chitosan as compared to the sausages containing sodium nitrite and sodium lactate, it could not be replaced by chitosan completely. However, total plate counts(TPC), thiobarbituric acid reactive substance(TBARS), volatile basis nitrogen(VBN) did not differ between chitosan treatments and controls. These results indicated that the addition of chitosan into meat products would be replaced with sodium nitrite partially, but it may not be completely replaced due to the reduced Hunter-a-values. Further research will be continuously performed to screen the natural ingredients which might have a cured pigment in meat products.

Formula Optimization of a Perilla-canola Oil (O/W) Emulsion and Its Potential Application as an Animal Fat Replacer in Meat Emulsion

  • Utama, Dicky Tri;Jeong, Haeseong;Kim, Juntae;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.580-592
    • /
    • 2018
  • The formulation of an oil/water (o/w) emulsion made up of a mixture of perilla oil and canola oil (30/70 w/w) was optimized using a response surface methodology to find a replacement for animal fat in an emulsion-type meat product. A 12 run Plackett-Burman design (PBD) was applied to screen the effect of potential ingredients in the (o/w) emulsion, including polyglycerol polyricinoleate (PGPR), fish gelatin, soy protein isolate (SPI), sodium caseinate, carrageenan (CR), inulin (IN) and sodium tripolyphosphate. The PBD showed that SPI, CR and IN showed promise but required further optimization, and other ingredients did not affect the technological properties of the (o/w) emulsion. The PBD also showed that PGPR played a critical role in inhibiting an emulsion break. The level of PGPR was then fixed at 3.2% (w/w total emulsion) for an optimization study. A central composite design (CCD) was applied to optimize the addition levels of SPI, CR or IN in an (o/w) emulsion and to observe their effects on emulsion stability, cooking loss and the textural properties of a cooked meat emulsion. Significant interactions between SPI and CR increased the cooking loss in the meat emulsion. In contrast, IN showed interactions with SPI leading to a reduction in cooking loss. Thus, CR was also removed from the formulation. After optimization, the level of SPI (4.48% w/w) and IN (14% w/w) was validated, leading to a perilla-canola oil (o/w) emulsion with the ability to replace animal fat in an emulsion-type meat products.