Fasting heat production (FHP) of growing buffalo calves (Bubalus bubalis) in the body weight range of 76 to 236 kg was determined using open circuit respiration chamber. The details of the chambers, calibration of gas analysers and operation of the systems are described. Animals were fasted for 96 hrs during which only water was provided. FHP was determined during next 24 hrs. The mean oxygen consumed, carbon dioxide and methane produced and urinary N excretion per 24 h was $17.03{\ell}$, $11.70{\ell}$, and $0.12{\ell}$ and 0.35 g respectively. The mean respiratory quotient ranged from 0.68 to 0.71, which indicated that post absorptive stage is reached after 96 hrs in growing buffalo calves previously fed ammoniated straw-based ration. Mean FHP of calves was $331.4kJ/kg\;W^{0.75}$. FHP of calves with range of mean body weights of 167 to 235 kg, although nonsignificant but, was almost 12% higher than of calves having mean body weight of 101 kg. Suitable exponent to body weight to describe FHP of buffalo calves was 0.87.
Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
Animal Bioscience
/
v.36
no.1
/
pp.75-83
/
2023
Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.
da Silva Teofilo, Guilherme Ferreira;Lizana, Rony Riveros;de Souza Camargos, Rosiane;Leme, Bruno Balbino;Morillo, Freddy Alexander Horna;Silva, Raully Lucas;Fernandes, Joao Batista Kochenborger;Sakomura, Nilva Kazue
Animal Bioscience
/
v.35
no.5
/
pp.690-697
/
2022
Objective: This study aimed to evaluate the effect of the ad libitum and restricted feeding regimen on fasting heat production (FHP) and body composition. Methods: Twelve Hubbard broilers breeders were selected with the same body weight and submitted in two feeding regimes: Restricted (T1) with feed intake of 150 g/bird/d and ad libitum (T2). The birds were randomly distributed on the treatments in two runs with three replications per treatment (per run). The birds were adapted to the feed regimens for ten days. After that, they were allocated in the open-circuit chambers and kept for three days for adaptation. On the last day, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured by 30 h under fasting. The respiratory quotient (RQ) was calculated as the VCO2/VO2 ratio, and the heat production (HP) was obtained using the Brower equation (1985). The FHP was estimated throughout the plateau of HP 12 hours after the feed deprivation. The body composition was analyzed by dual-energy X-ray absorptiometry scanning at the end of each period. Data were analyzed for one-way analysis of variance using the Minitab software. Results: The daily feed intake was 30 g higher to T2 (p<0.01) than the T1. Also, the birds of the T2 had significatively (p<0.05) more oxygen consumption (+3.1 L/kg0.75/d) and CO2 production (+2.2 L/kg0.75/d). That resulted in a higher FHP 359±14 kJ/kg0.75/d for T2 than T1 296±17.23 kJ/kg0.75/d. In contrast, the RQ was not different between treatments, with an average of 0.77 for the fasting condition. In addition, protein and fat composition were not affected by the treatment, while a tendency (p<0.1) was shown to higher bone mineral content on the T1. Conclusion: The birds under ad libitum feeding had a higher maintenance energy requirement but their body composition was not affected compared to restricted feeding.
The present study was conducted to estimate energy requirements for maintenance in laying hens by using indirect calorimetry and energy balance. A total of 576 28-wk-old Nongda-3 laying hens with dwarf gene were randomly allocated into four ME intake levels (86.57, 124.45, 166.63 and 197.20 kcal/kg body weight $(BW)^{0.75}$ per d) with four replicates each. After a 4 d adaptation period, 36 hens from one replicate were maintained in one of the two respiration chambers to measure the heat production (HP) for 3 d during the feeding period and subsequent 3 d fast. Metabolizable energy (ME) intake was partitioned between heat increment (HI), HP associated with activity, fasting HP (FHP) and retained energy (RE). The equilibrium FHP may provide an estimate of NE requirements for maintenance (NEm). Results showed that HP, HI and RE in the fed state increased with ME intake level (p<0.05). Based on the regression of HP on ME intake, the estimated ME requirements for maintenance (MEm) was 113.09 kcal/kg $BW^{0.75}$ per d when ME intake equals HP. The FHP was decreased day by day with the lowest value on the third day of starvation. Except for lowest ME intake level, the FHP increased with ME intake level on the first day of starvation (p<0.05). The FHP at the two higher ME intake levels were greater than that at the two lower ME intake levels (p<0.05) but no difference was found between the two lower ME intake levels. Linear regression of HP from the fed state to zero ME intake yielded a value of 71.02 kcal/kg $BW^{0.75}$ per d, which is higher than the extrapolated FHP at zero ME intake (60.78, 65.23 and 62.14 kcal/kg $BW^{0.75}$ per d for the first, second and third day of fasting, respectively). Fasting time, lighting schedules, calculation methods and duration of adaptation of hens to changes in ME intake level should be properly established when using indirect calorimetry technique to estimate dietary NE content, MEm and NEm for laying hens.
Koga, A.;Kurata, K.;Furukawa, R.;Nakajima, M.;Kanai, Y.;Chikamune, T.
Asian-Australasian Journal of Animal Sciences
/
v.12
no.8
/
pp.1273-1276
/
1999
Several reports have indicated that a rectal temperature of buffaloes is easily influenced by their surroundings. To clarify an effect of changing environmental temperature on thermoregulatory responses of buffaloes, an environment with diurnal temperature changes of $25^{\circ}C$ to $35^{\circ}C$ was created using an artificial climate laboratory. Three swamp buffaloes and three Friesian cows were exposed to three different experimental periods as follows: Period 1 (constant temperature of $30^{\circ}C$, Period 2 (diurnally changing temperature) and Period 3 (diurnally changing temperature and fasting). Heat production, rectal temperature, respiration rate, heart rate and respiration volume were measured during each period. Rectal temperature of the buffaloes fluctuated diurnally with the changing temperature (Periods 2 and 3), but remained constant in cows. Mean heat production was significantly lower in buffaloes than in cows in Period 2 and 3. However, the maximum rectal temperature and the increment of heat production were not always lower in buffaloes than in cows during Period 2. These results show that a rectal temperature and heat production in buffaloes are markedly influenced by the diurnal changes in temperature. Compared with Bos Taurus cows, the differences may be attributed to the physiological features of buffaloes including a high heat conductivity of their bodies and an lower heat production.
Net and metabolizable energy requirements for maintenance of Hanwoo (Korean native cattle) bulls were estimated in twenty-eight fasting metabolism trials using seven different feeds at four stages of body weight(100, 200, 300 and 400kg). Three cattle for each of twenty-eight trials fed at a level of maintenance energy requirement were housed in metabolic stalls during the 5 days of collection period. Thereafter, during the 2 days of respiration period the heat production was measured by indirect calorimetry using respiratory chamber. After finishing the respiratory metabolism trials under the maintenance level, experimental animals were fasted for 5 days and were measured heat production by indirect calorimetry using respiratory chamber. Seven different feeds were: 1) mixed ration of concentrate and rice straw, 2) mixed ration of concentrate and mixed grass hay, 3) mixed ration of concentrate and corn silage, 4) rice straw alone, 5) mixed grass hay alone, 6) corn silage alone, 7) concentrate alone. Fasting heat production were 66.05/$W^{0.75}$ at 100kg of body weight and 60~63kcal/$W^{0.75}$ at 200~400kg of body weight. When subtracting heat loss by muscular work from the fasting heat production, basal metabolic rate was 55.92kcal/$W^{0.75}$. The average values of NEm requirements were obtained by adding urinary energy excretion to the basal metabolic rates were 69.1, 62.1, 65.8 and 64.4kcal/$W^{0.75}$ for the four stages of body weight, respectively. The ME requirement for maintenance could be calculated using retained energy and the efficiency of utilization of ME for net energy. The ME requirement for maintenance thus obtained was 102.69kcal/$W^{0.75}$.
Lee, In Kyu;Kye, Yoon Chul;Kim, Girak;Kim, Han Wool;Gu, Min Jeong;Umboh, Johnny;Maaruf, Kartini;Kim, Sung Woo;Yun, Cheol-Heui
Asian-Australasian Journal of Animal Sciences
/
v.29
no.8
/
pp.1075-1082
/
2016
Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.
Zhiqian, Lyu;Yifan, Chen;Fenglai, Wang;Ling, Liu;Shuai, Zhang;Changhua, Lai
Animal Bioscience
/
v.36
no.1
/
pp.108-118
/
2023
Objective: The objective of this experiment was to determine the net energy (NE) value of 6 wheat bran and 1 wheat shorts by indirect calorimetry and establish the NE prediction equations of wheat bran fed to growing barrows. Methods: Forty-eight growing barrows (28.5±2.4 kg body weight) were allotted in a completely randomized design to 8 dietary treatments that included a corn-soybean meal basal diet, 6 wheat bran diets and 1 wheat shorts diet. The inclusion level of wheat bran or wheat shorts in diets is 30%. Results: The addition of wheat bran reduced the apparent total tract digestibility (ATTD) of nutrients (p<0.05). The ATTD of gross energy, crude protein (CP) and dry matter (DM) in the wheat shorts were greater than that in the wheat bran. Addition of wheat bran or wheat shorts had no effect on total heat production and fasting heat production. The NE of wheat bran was negatively correlated with neutral detergent fiber (r = -0.84; p<0.05) and acid detergent fiber (r = -0.83; p<0.05), while it was positively correlated with CP (r = 0.92; p<0.01). The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The ratio of NE to metabolizable energy for wheat bran fed to growing pigs was from 66.0% to 71.7%, whereas the value for wheat shorts was 83.7%. Conclusion: The NE values of wheat bran ranged from 6.79 to 8.15 MJ/kg DM, and the NE value of wheat shorts was 12.47 MJ/kg DM. The NE value of wheat bran can be well predicted based on energy content and proximate analysis.
The present study was conducted to estimate the NE values of corn, dried distillers grains with solubles (DDGS) and wheat bran (WB) for laying hens based on an indirect calorimetry method and nitrogen balance measurements. A total of 576 twenty-eight-wk-old Dwarf Pink-shell laying hens were randomly assigned to four groups fed a basal diet (BD) or a combination of BD with 50% corn or 20% DDGS or 20% WB, with four replicates each. After a 7-d adaptation period, each replicate with 36 hens were kept in one of the two respiration chambers to measure the heat production (HP) for 6 days during the feeding period and subsequent 3-d fasting. The equilibrium fasting HP (FHP) provided an estimate of NE requirements for maintenance (NEm). The NE values of test feedstuffs was estimated using the difference method. Results showed that the heat increment that contributed 35.34 to 37.85% of ME intake was not influenced by experimental diets (p>0.05) when expressed as Mcal/kg of DM feed intake. Lighting increased the HP in hens in an fed-state. The FHP decreased over time (p<0.05) with the lowest value determined on the third day of starvation. No significant difference between treatments was found on FHP of d 3 (p>0.05). The estimated AME, AMEn, and NE values were 3.46, 3.44 and 2.25 Mcal/kg DM for corn, 3.11, 2.79, and 1.80 Mcal/kg DM for DDGS, 2.14, 2.10, and 1.14 Mcal/kg DM for WB, respectively. The net availability of AME of corn tended to be numerically higher than DDGS and WB (p = 0.096). In conclusion, compared with corn, the energy values of DDGS and WB were overestimated when expressed on an AME basis.
Objective: The objective of this experiment was to determine the net energy (NE) content of full-fat rice bran (FFRB), corn germ meal (CGM), corn gluten feed (CGF), solvent-extracted peanut meal (PNM), and dehulled sunflower meal (SFM) fed to growing pigs using indirect calorimetry or published prediction equations. Methods: Twelve growing barrows with an average initial body weight (BW) of $32.4{\pm}3.3kg$ were allotted to a replicated $3{\times}6$ Youden square design with 3 successive periods and 6 diets. During each period, pigs were individually housed in metabolism crates for 16 d, which included 7 days for adaptation. On d 8, the pigs were transferred to the respiration chambers and fed one of the 6 diets at 2.0 MJ metabolizable energy (ME)/$kg\;BW^{0.6}/d$. Total feces and urine were collected and daily heat production was measured from d 9 to d 13. On d 14 and d15, pigs were fed at their maintenance energy requirement level. On the last day pigs were fasted and fasting heat production was measured. Results: The NE of FFRB, CGM, CGF, PNM, and SFM measured by indirect calorimetry method was 12.33, 8.75, 7.51, 10.79, and 6.49 MJ/kg dry matter (DM), respectively. The NE/ME ratios ranged from 67.2% (SFM) to 78.5% (CGF). The NE values for the 5 ingredients calculated according to the prediction equations were 12.22, 8.55, 6.79, 10.51, and 6.17 MJ/kg DM, respectively. Conclusion: The NE values were the highest for FFRB and PNM and the lowest in the corn co-products and SFM. The average NE of the 5 ingredients measured by indirect calorimetry method in the current study was greater than values predicted from NE prediction equations (0.32 MJ/kg DM).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.