• Title/Summary/Keyword: Fastening Technique

Search Result 19, Processing Time 0.027 seconds

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

An Experimental Study on the Mechanical Properties of T-Joints Structure using CFRP/Al Honeycomb Sandwich Composite (CFRP/Al하니콤 샌드위치 복합재 T-Joint 구조물의 기계적 물성에 대한 실험적 연구)

  • Cho, Ki-Dae;Ha, Sung-Rok;Kang, Kwang-Hee;Kim, Jie-Eok;Yang, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • Application of composite structures on naval ships strongly depends on the mechanical strength and collapse behavior of the T-joints of the whole structure. Because of the weight advantages over single skin composite and bolt fastening joining, three types of T-joints using both honeycomb sandwich composite and adhesive bonding were suggested to determine the effect of T-joint configuration. It was found that joining with a urethane foam block and overlaminates using the secondary co-bonding technique improves T-joint strength.

Geometric Modeling of the Skin-Stringer Integrated Panel with Three-Dimensional Woven Composite (3차원 직조 복합재료 스킨-스트링거 일체형 패널의 기하학적 모델링)

  • Yeonhi, Kim;Hiyeop, Kim;Jungsun, Park;Joonhyung, Byun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.8-17
    • /
    • 2022
  • This paper presents a novel geometric modeling technique to predict the mechanical properties of an aircraft wing's skin-stringer integrated panel. Due to mechanical and adhesive fastening, this panel is vulnerable to stress concentration and debonding, so we designed it to integrate the skin and stringer using three-dimensional woven composites. Geometric modeling was conducted by measuring the geometric parameters of the specimen and defining the pattern of the yarns as functions. We used a weighted average model with iso-strain and iso-stress assumptions to predict the mechanical properties of the panel parts. We then compared the results of a finite element analysis with a compression test to verify the accuracy of our model. Our proposed technique proved to be more efficient than the traditional experimental method for predicting the mechanical properties of skin-stringer integrated panels.

Identification of Hazards for Offshore Drilling through Accident Statistics and JSA-based Risk Reduction (사고 통계 분석을 통한 해양 시추작업 위험요소 제시 및 JSA 기반 위험저감 방안)

  • Noh, Hyonjeong;Kang, Kwangu;Park, Min-Bong;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.865-874
    • /
    • 2020
  • Offshore drilling units have a very dangerous working conditions due to the harsh working environment of the ocean and the high possibility of fire or explosion. This study would identify the hazards that emerge from the marine environment in the operation and maintenance phase of offshore drilling units and show how these hazards can be reduced through risk assessment/management. Various risk reduction and management measures were first reviewed, and Job Safety Analysis (JSA) was selected as the risk assessment technique of this study. In order to understand the characteristics of offshore drilling operations, accident statistics of onshore and offshore drilling were analyzed and compared with each other, and major risk factors for offshore drilling were derived. The jobs in which offshore drilling accidents occur more frequently than onshore drilling was analyzed as the job of fastening, transporting and moving pipes and various materials. This result is due to the limited space of the ocean and the work environment that is prone to being shaken by wind, waves and ocean currents. Based on these statistical results, the job of picking and making up drill pipes was selected as a high-risk job, and JSA was performed as an example. A detailed safety check procedure is proposed so that workers can fully recognize the danger and perform work in a safe state that has been confirmed.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

The Study on the Buttons (centering around 19th-20th Centuries) (단추에 관한 연구 -19, 20세기를 중심으로-)

  • 이영란
    • Journal of the Korean Society of Costume
    • /
    • v.22
    • /
    • pp.263-276
    • /
    • 1994
  • The achievement of notable social reoforms attained during the period of 19th and 20th centuries needlessly speaking remodelded the social environmental into several different patterns such as :1) high industrialization 2) propensity to consume 3) up graded overall social stands. Accordingly the industrial world of the but-tons too established the mess production syhstem by breaking from convention of hand-craft work of 17th century. The raw materials used in the production line on buttons during the 20th century are almost all-kind of materials one can possibly named including cheap plastic which enabled production lines to produce cheaper but higher productivities of the buttons being produced, The design (incused design) used in the 19-20h centuries are : men landscape, sports features, birds, livestocks, bugs, or geomatric features, tec, 1, The classification o f the buttons by materials Techniques shapes colors marking (Incused design) used in the productionof buttons in the England United States of America Laska Italy france Denmark Japan and India are categolizzed as : natural raw materials and syntetical resines. 1) Of the natural raw materials used are : Matal Enamel Iodine Agate, Coral, Green jade(Jasper) Granite, Wood, Ivory, Horn and bone etc. 2) The sythetical resin used in the button in-dustries are : Artificial jewell glass Acrylic material Styroform Celluloid and Nylon etc. 2. The thecnique quoted in producing buttons are hand craft work inlay work precision casting press mosic dye etching, processing, engraving and embossed carving etc. 3. The major designs used in the buttons in -dustries are : Round shape however elliptical column angular and edge shape often used. 4. The colors used are : The multi-colors were highly used than mono-colored materials such as : Adjoining Color and Contrast Color. The highest consideration to be considered in choosing the colors for the buttons are harmonization and matching factor with the garment or dresses to be wore. 5. The major design(incused design) on the buttons are embodiment and the design were also used in order of abstractive-combination abstractive with has offers much surprising. The button industries during the 19th and 20th centuries were not only the determination factors those can judge the value of self-pride of Nation and which were far beyond the in-dustrial arts in those days but also highly refelected and influenced by cultural sense ideology and self-pride of the Nation of those period. The followings are details of the role of the buttons categolized in the order of functional ornamental and symbolical aspects : 1. The functional role : The functional role of the buttons were simply designed for dress how-ever the buttons beyond from this role of function now a days. 2. The ornamental role : The ornamental role of he button beyond from this role of the button were effectuated by : 1) shape materials colors 2) technique locations size and design (incused design) 3) The ramaterials used for buttons shall not be over looked because it is highly depends on the taste sense and combination of harmony with the garment to be wore. 4) The color of the buttons are made well contrasted with the color of garments just as in the case of other artistical area such as matchs with the color of garment of contrast with brigtness of colors contrasted as complementary color and so and so. 5) The technique being adoped are: precision casting press handcraft inlay work etching mosic etc,. Since the buttons are no longer a simple catching devise used to fasten together the different part of the dress but now it has formed own and occupied the independent role in the garment or dresses location can be de-termined and varying depending on the ideas of designers. The size of the buttons has no specific limits, However the variation has widely dependined on the entire circumperence rhythm contrast harmonization of the garments. 3. The symbolical role : Since the button is no longer a just a simple devise for catching and fastening device used fastening together the different part of the garments but now were built a independent area as major part of the Garment and well reflected all kinds of occupations political background cultural as-pect etc. on the buttons. The design of buttons in the western circles are more simplified but they are polished looks and their techniques of manufacturing are comination of both machanis and handcraft. The colors used in the buttons are pretty well harmonized with garment(dress). Almost all kind of materials can be used in the but-tons however materials used in the buttons are : Bone of livestocks ivory, turtle shell are no longer used because the prevention of cruely of animal. On the contraly the level of buttons indus-try of Korea is far to reach and catch up with the level of western circles. It is highly suggested therefore the but-tons industrial field of Republic of Korea shall place and encouragement in producing beter industrial environment of the buttons based on the traditional and cultural aspect of republic of Korea to produce both manufacturing of qulified and best designed and colored buttons.

  • PDF

Optimal Design of Multi-Plate Clutch Featuring MR Fluid (MR 유체를 적용한 Multi-Plate Clutch의 최적설계)

  • Park, Jin-Young;Kim, Young-Choon;Oh, Jong-Seok;Jeon, Jae-Hoon;Jeong, Jun-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2020
  • 4WD technology is being actively applied to passenger cars. Therefore, dry multi-plate clutches are used for transfer cases. On the other hand, dry clutches have problems related to large vibrations and poor ride quality. To solve this problem, this paper proposes a multi-plate clutch with an MR fluid. When fastening the multi-plate clutch in the transfer case, the proposed MR clutch was applied to reduce the shock and friction, which is a key component in a four-wheel-drive system. MR multi-plate clutch has a fluid coupling mode and a compression mode. A torque model equation was derived for the optimal design. The analysis was performed using Ansys Maxwell to optimize the design parameters of the multi-plate clutch. Electromagnetic field analysis confirmed the strength of the magnetic field when the number of disks and plates were changed, and the maximum strength of the magnetic field was 0.45 Tesla. By applying this to the torque equation, the spacing between the plates was 2 mm, and the inner and outer diameters of the plates were selected to be 45 mm and 55 mm, respectively. Overall, this paper proposes an optimal design technique to maximize the performance of an MR multi-plate clutch.

Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs (블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법)

  • O-Hyun Kwon;Joo-Shin Park;Jung-Kwan Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.363-371
    • /
    • 2023
  • To construct a ship, blocks of various sizes must be moved and erected . In this process, lugs are used such that they match the block fastening method and various functions suitable for the characteristics of each shipyard facility. The sizes and shapes of the lugs vary depending on the weight and shape of the block structures. The structure is reinforced by welding the doubling pads to compensate for insufficient rigidity around the holes where the shackle is fastened. As for the method of designing lugs according to lifting loading conditions, a simple calculation based on the beam theory and structural analysis using numerical modeling are performed. In the case of the analytical method, a standardized evaluation method must be established because results may differ depending on the type of element and modeling method. The application of this ambiguous methodology may cause serious safety problems during the process of moving and turning-over blocks. In this study , the effects of various parameters are compared and analyzed through numerical structural analysis to determine the modeling conditions and evaluation method that can evaluate the actual structural response of the lug. The modeling technique that represents the plate part and weld bead around the lug hole provides the most realistic behavior results. The modeling results with the same conditions as those of the actual lug where only the weld bead is connected to the main body of the lug, showed a lower ulimated strength compared with the results obtained by applying the MPC load. The two-dimensional shell element is applied to reduce the modeling and analysis time, and a safety working load was verified to be predicted by reducing the thickness of the doubling pad by 85%. The results of the effects of various parameters reviewed in the study are expected to be used as good reference data for the lug design and safe working load prediction.