• Title/Summary/Keyword: Fastening Hole Drilling

Search Result 2, Processing Time 0.016 seconds

A Study on the Development of a Specialized Prototype End-Effector for RDSs(Robotic Drilling Systems) (RDS(Robotic Drilling System) 구축을 위한 전용 End-Effector Prototype 개발에 관한 연구)

  • Kim, Tae-Hwa;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.132-141
    • /
    • 2013
  • Robotic Drilling Systems(RDSs) set the standard for the factory automation systems in aerospace manufacturing. With the benefits of cost effective drilling and predictive maintenance, RDSs can provide greater flexibility in the manufacturing process. The system can be easily adopted to manage very complex and time-consuming processes, such as automated fastening hole drilling processes of large aircraft sections, where it would be difficult accomplished by workers following teaching or conventional guided methods. However, in order to build an RDS based on a CAD model, the precise calibration of the Tool Center Point(TCP) must be performed in order to define the relationships between the fastening-hole target and the End Effector(EEF). Based on the kinematics principle, the robot manipulator requires a new method to correct the 3D errors between the CAD model of the reference coordinate system and the actual measurements. The system can be called as a successful system if following conditions can be met; a. seamless integration of the industrial robot controller and the IO Level communication, b. performing pre-defined drilling procedures automatically. This study focuses on implementing a new technology called iGPS into the fastening-hole-drilling process, which is a critical process in aircraft manufacturing. The proposed system exhibits better than 100-micron 3D accuracy under the predefined working space. Based on the proposed EEF fastening-hole machining process, the corresponding processes and programs are developed, and its feasibility is studied.

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.