• Title/Summary/Keyword: Fast-Switching

Search Result 560, Processing Time 0.023 seconds

Power Loss Analysis of EV Fast Charger with Wide Charging Voltage Range for High Efficiency Operation (넓은 충전 범위를 갖는 전기 자동차용 급속 충전기의 고효율 운전을 위한 손실 분석)

  • Kim, Dae Joong;Park, Jin-Hyuk;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1055-1063
    • /
    • 2014
  • Power losses of a 1-stage DC-DC converter and 2-stage DC-DC converter are compared in this paper. A phase-shift full-bridge DC-DC converter is considered as 1-stage topology. This topology has disadvantages in the stress of rectifier diodes because of the resonance between the leakage inductor of the transformer and the junction capacitor of the rectifier diode. 2-stage topology is composed of an LLC resonant full-bridge DC-DC converter and buck converter. The LLC resonant full-bridge DC-DC converter does not need an RC snubber circuit of the rectifier diode. However, there is the drawback that the switching loss of the buck converter is large due to the hard switching operation. To reduce the switching loss of the buck converter, SiC MOSFET is used. This paper analyzes and compares power losses of two topologies considering temperature condition. The validity of the power loss analysis and calculation is verified by a PSIM simulation model.

A New High Speed Pulsed Mode Switching DC Power Supply with High Power Factor (새로운 방식의 고속 펄스모드 스위칭 기능을 갖는 고역률 직류전원장치)

  • 안종수;노의철;김인동
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • A new high voltage DC power supply is proposed. The proposed power supply is constructed with several power converters connected in series. It is easy to obtain high DC voltage for the same structure of each power converter. The output DC power of the proposed power supply can be disconnected from the load within several hundred microseconds at the instant of a load short-circuit fault. The rising time of the output DC voltage is also as small as several hundred microseconds, and there is no overshoot of the voltage because all of the output filter capacitors keep undischarged state even in load short-circuit condition. Therefore, the proposed scheme is suitable for the protection of frequent output short-circuit and fast on/off switching of output DC voltage. The proposed power supply has improved features such as simple structure, high power factor, and reduced size and volume compared with the conventional schemes. The operating principle is described and the validity of the proposed scheme is proved through simulations and experiments.

A Study on Path Selection Scheme for Fast Restoration in Multilayer Networks (신속한 다계층 보호 복구를 위한 경로선택 방식 연구)

  • Cho, Yang-Hyun;Kim, Hyun-Cheol
    • Convergence Security Journal
    • /
    • v.12 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • The explosive growth of Internet traffic cause by smart equipment such as smart phone has led to a dramatic increase in demand for data transmission capacity and network control architecture, which requires high transmission rates beyond the conventional transmission capability. Next generation networks are expected to be controlled by Generalized Multi-Protocol Label Switching(GMPLS) protocol suite and operating at multiple switching layers. In order to ensure the most efficient utilization of multilayer network resources, effective global provisioning that providing the network with the possibility of reacting in advance to traffic changes should be provided. In this paper, we proposes a new path selection scheme in multilayer optical networks based on the vertical PCE architecture and a different approach to efficiently exploit multiple PCE cooperation.

Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber (무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • A new soft switching single stage AC-DC full bridge boost converter with unit input power factor and isolated output i is presented in this paper. Due to the use of a non-dissipative snubber on the primary side, a single stage high-power f factor isolated full bridge boost converter has a significant reduction of switching losses in the main switching devices. The non-dissipative snubber adopted in this study consists of a snubber capacitor Cr, a snubber inductor Cr, a fast r recovery snubber diode Dr' and a commutation diode Dp. This paper presents the complete operating principles, t theoretical analysis and experimental results.

  • PDF

Fast Link Switching Scheme for LED-ID System

  • Trung, Bui Minh;Uddin, Muhammad Shahin;Chowdhury, Mostafa Zaman;Nguyen, Tuan;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1586-1594
    • /
    • 2011
  • LED-ID (light emitting diode - identification) technology is the new paradigm in the identification technology environment. LED-ID system typically needs line of sight (LOS) that supports narrow FOV transceivers links to achieve high data rate. On the other hand, narrow FOV reduces the coverage area. Therefore, the number of tags is increased significantly to cover the whole area. In this case number of link switching is increased when the reader moves within whole coverage area. Link switching delay is the important factor for the moving reader to maintain the communication with high data rate and better QoS. In this paper we propose in literature a new link switching scheme and measure the link switching delay time for LED-ID system. The simulation results show that the proposed link switching scheme is a possible candidate for multi-tag LED-ID system.

In-plane Switching Liquid Crystal Cell with a Mixed Bent Electrode Structure for Fast Response Time

  • Ko, Tae-Woon;Kim, Jae-Chang;Lee, Joun-Ho;Choi, Hyun-Chul;Ji, Seung-Hoon;Choi, Jung-Min;Lee, Chul-Hun;Lee, Gi-Dong
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.12-15
    • /
    • 2008
  • A bent electrode structure is proposed in the super in-plane switching (S-IPS) liquid crystal (LC), as it can reduce the response time without loss of transmittance in the bright state. The electrode angle in each position of the bent electrode was optimized to simultaneously achieve high transmittance and fast response time. The electro-optical characteristics of the proposed LC cell structure were experimentally compared with those of the conventional cell. It was observed that the response time became over 8% shorter without loss of transmittance when the proposed bent structure was applied.

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

A Scheme of EDTC Control using an Induction Motor Three-Level Voltage Source Inverter for Electric Vehicles

  • Zaimeddine, R.;Berkouk, E.M.;Refoufi, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.505-512
    • /
    • 2007
  • The object of this paper is to study a new control structure for sensorless induction machines dedicated to electrical drives using a three-level voltage source inverter VSI-NPC. The amplitude and the rotating speed of the flux vector can be controlled freely. The scheme investigated is an Enhanced direct torque control "EDTC" for electric vehicle propulsion. The considered application imposes some constraints which are achieved in EDTC control (fast torque response, optimal switching logic, torque control at zero speed, and large speed control. The results obtained for an induction motor indicate superior performance over the FOC type without need for any mechanical sensor.

Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure

  • Park, Byung Wok;Oh, Seung-Won;Kim, Jung-Wook;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2014
  • We proposed a method for fast turn-off switching of a vertically-aligned liquid crystal cell by low-temperature curing of the polymer structure. We confirmed that the turn-off times of the fabricated cells were reduced significantly as the curing temperature was lowered to $-20^{\circ}C$. We accounted for the effect of low-temperature curing on the turn-off time by using a mathematical model and by observing images obtained via scanning electron microscopy. We also confirmed that low-temperature curing is more effective in reducing the response time when the device is operated at a low temperature.