• Title/Summary/Keyword: Fast smoke and flame detection

Search Result 2, Processing Time 0.014 seconds

Fast Video Fire Detection Using Luminous Smoke and Textured Flame Features

  • Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5485-5506
    • /
    • 2016
  • In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.

Flame and Smoke Detection Method for Early and Real-Time Detection of Tunnel Fire (터널 화재의 실시간 조기 탐지를 위한 화염 및 연기 검출 기법)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.59-70
    • /
    • 2008
  • In this paper, we proposed image processing technique for automatic real-time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in variety environments, it is purposeful to propose many studies to minimize and to discover the incident as fast as possible. But we need new specific algorithm because tunnel environment is quite different and it is difficult to apply previous fire detection algorithm to tunnel environment. Therefore, in this paper, we proposed specific algorithm which can be applied in tunnel environment. To minimize false detection in tunnel we used color and motion information. And it is possible to detect exact position in early stage with detection, test, verification procedures. In addition, by comparing properties of each algorithm throughout experiment, we have proved the validity and efficiency of proposed algorithm.