• 제목/요약/키워드: Fast reactors

검색결과 154건 처리시간 0.021초

Influence of operation of thermal and fast reactors of the Beloyarsk NPP on the radioecological situation in the cooling pond: Part II, Macrophytes and fish

  • Aleksei Panov ;Alexander Trapeznikov;Vera Trapeznikova ;Alexander Korzhavin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.707-716
    • /
    • 2023
  • The influence of waste technological waters of thermal and fast reactors of Beloyarsk NPP (Russia) on the accumulation of 60Co, 90Sr and 137Cs in macrophytes and ichthyofauna of the cooling pond has been studied. Critical radionuclides, routes of their entry into the ecosystem and periods of maximum discharge of radioisotopes into the cooling pond have been determined. It is shown that the technology of electricity generation at the Beloyarsk NPP, based on fast reactors, has a much smaller effect on the release of artificial radionuclides into the environment. Therefore, during the entire period of monitoring studies (1976-2019), the decrease in the specific activity of radionuclides of NPP origin in macrophytes was 13-25800 times, in ichthyofauna 1.5-44.5 times. The maximum discharge of artificial radionuclides into the Beloyarsk reservoir was noted during the period of restoration and decontamination work aimed at eliminating the emergencies at the AMB reactors of NPP. The factors influencing the accumulation of artificial radionuclides in the components of the freshwater ecosystem of the Beloyarsk cooling pond have been determined, including: the physicochemical nature of radioisotopes, their concentration in surface water, the temperature of the aquatic environment, the trophicity of the reservoir, the species of hydrobionts.

Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

  • Acharya, Avinash Kumar;Sharma, Anil Kumar;Avinash, Ch.S.S.S.;Das, Sanjay Kumar;Gnanadhas, Lydia;Nashine, B.K.;Selvaraj, P.
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1442-1450
    • /
    • 2017
  • In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI). The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography) is brought out using a woods metal-water experimental facility which simulates the $UO_2-Na$ interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

Characterising the dynamic seals used in absorber rod drive mechanisms in Indian FBR

  • Kaushal, Nihal;Patri, Sudheer;Kumar, R. Suresh;Meikandamurthy, C.;Sreedhar, B.K.;Murugan, S.;Raghupathy, S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3438-3448
    • /
    • 2021
  • Dynamic seals are one of the critical components of Absorber Rod Drive Mechanism of Fast Breeder Reactors, requiring separate experimental development. Their significance can't be overemphasized considering that the availability and re-usability of Control Rod Drive Mechanisms of Fast Breeder Test Reactor is governed by the failure rate of dynamic seals (bellows). For prototype and subsequent Fast Breeder Reactors in India, choice of the dynamic seal is changed to an in-house designed & developed labyrinth type V-ring seal. The present work is related to the numerical investigations carried out to gain insights into the sealing mechanism and the thermal behaviour of these seals. The results indicate that the seal geometry is very important for obtaining optimum performance. By changing the geometry of the present seal, performance enhancement by more than 50% in important indices is obtained. Further, the results point out that caution shall be exercised when the seal material & its operating temperature are changed. Also, the numerical model developed in this study will be useful for developing more robust dynamic seals in future.

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

PYROPROCESSING FLOWSHEETS FOR RECYCLING USED NUCLEAR FUEL

  • Williamson, M.A.;Willit, J.L.
    • Nuclear Engineering and Technology
    • /
    • 제43권4호
    • /
    • pp.329-334
    • /
    • 2011
  • Two conceptual flowsheets were developed for recycling used nuclear fuel. One flowsheet was developed for recycling used oxide nuclear fuel from light water reactors while the other was developed for recycling used metal fuel from fast spectrum reactors. Both flowsheets were developed from a set of design principles including efficient actinide recovery, nonproliferation, waste minimization and commercial viability. Process chemistry is discussed for each unit operation in the flowsheet.

Use of similarity indexes to identify spatial correlations of sodium void reactivity coefficients

  • Jimenez-Carrascosa, Antonio;Garcia-Herranz, Nuria
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2442-2451
    • /
    • 2020
  • The safety level of Sodium Fast Reactors is directly related with the sodium void reactivity. A low-void effect design has been proposed within the Horizon2020 ESFR-SMART project thanks to the introduction of a sodium plenum above the active core. In order to assess the impact of this core conception on transient analysis, a map with the spatial distribution of sodium void worth can be computed and fed into a point-kinetics-based transient code. Due to the spatial correlations between neighboring zones, the global effect of voiding two different axial or radial regions is not necessarily the sum of both individual contributions. Neglecting those correlations in the void worth map and consequently in the transient analysis may lead to an unrealistic prediction of the transient sequences. In this work, a method based on sensitivity analysis and similarity assessment is proposed for predicting those correlations. The method proved to be able to establish correlations between axial slices of a sub-assembly and was checked against realistic sodium void propagation patterns.

분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성 (Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor)

  • 박훈채;이병규;김효성;최항석
    • 청정기술
    • /
    • 제25권2호
    • /
    • pp.161-167
    • /
    • 2019
  • 바이오매스의 급속열분해를 위하여 지난 수십 년간 다양한 형태의 반응기가 개발되었다. 급속열분해 공정의 반응기는 유동층 반응기가 많이 사용되어 왔으며, 최근에는 분사층 반응기를 이용한 바이오매스의 급속열분해 특성에 대한 연구가 다수의 연구자들에 의해 수행되고 있다. 분사층 반응기의 유동화 특성은 입자의 물리적 특성, 유체 제트의 속도, core와 annulus의 구조에 영향을 받으며, 반응기의 기하학적 구조는 분사층 내부의 core와 annulus 구조를 결정하는 주요 인자이다. 따라서 분사층 반응기의 최적설계를 위해서는 열분해 반응에 영향을 주는 인자에 대한 바이오매스의 급속열분해 특성에 대한 연구가 수행되어야 한다. 하지만 분사층 반응기의 기하학적 구조에 의한 바이오매스의 급속열분해 특성은 자세히 연구되지 않았다. 본 연구에서는 분사층 반응기의 원뿔각과 반응 온도 변화에 따른 Jatropha curcas L. seed shell cake의 급속열분해 실험을 수행하여 분사층 반응기의 최적 형상과 반응 온도를 도출하였다. 실험결과, 열분해 오일의 에너지 수율은 반응 온도 $450^{\circ}C$, 분사층 반응기의 원뿔각 $44^{\circ}$에서 63.9%로 가장 높게 나타났다. 그리고 분사층 반응기 내 고체입자의 열전달과 기체상 열분해 생성물의 체류시간은 원뿔각의 영향을 받아 열분해 생성물의 수율 및 열분해 오일의 품질에 영향을 주는 것으로 나타났다.

TECHNICAL RATIONALE FOR METAL FUEL IN FAST REACTORS

  • Chang, Yoon-Il
    • Nuclear Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.161-170
    • /
    • 2007
  • Metal fuel, which was abandoned in the 1960's in favor of oxide fuel, has since then proven to be a viable fast reactor fuel. Key discoveries allowed high burnup capability and excellent steady-state as well as off-normal performance characteristics. Metal fuel is a key to achieving inherent passive safety characteristics and compact and economic fuel cycle closure based on electrorefining and injection-casting refabrication.