• 제목/요약/키워드: Fast neutrons

검색결과 77건 처리시간 0.023초

Assembly Neutron Moderation System for BNCT Based on a 252Cf Neutron Source

  • Gheisari, Rouhollah;Mohammadi, Habib
    • 한국의학물리학회지:의학물리
    • /
    • 제29권4호
    • /
    • pp.101-105
    • /
    • 2018
  • In this paper, a neutron moderation system for boron neutron capture therapy (BNCT) based on a $^{252}Cf$ neutron source is proposed. Different materials have been studied in order to produce a high percentage of epithermal neutrons. A moderator with a construction mixture of $AlF_3$ and Al, three reflectors of $Al_2O_3$, BeO, graphite, and seven filters (Bi, Cu, Fe, Pb, Ti, a two-layer filter of Ti+Bi, and a two-layer filter of Ti+Pb) is considered. The MCNPX simulation code has been used to calculate the neutron and gamma flux at the output window of the neutronic system. The results show that the epithermal neutron flux is relatively high for four filters: Ti+Pb, Ti+Bi, Bi, and Ti. However, a layer of Ti cannot reduce the contribution of ${\gamma}$-rays at the output window. Although the neutron spectra filtered by the Ti+Bi and Ti+Pb overlap, a large fraction of neutrons (74.95%) has epithermal energy when the Ti+Pb is used as a filter. However, the percentages of the fast and thermal neutrons are 25% and 0.5%, respectively. The Bi layer provides a relatively low epithermal neutron flux. Moreover, an assembly configuration of 30% $AlF_3+70%$ Al moderator/$Al_2O_3$ reflector/a two-layer filter of Ti+Pb reduces the fast neutron flux at the output port much more than other assembly combinations. In comparison with a recent model suggested by Ghassoun et al., the proposed neutron moderation system provides a higher epithermal flux with a relatively low contamination of gamma rays.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

Delayed fast neutron as an indicator of burn-up for nuclear fuel elements

  • Akyurek, T.;Shoaib, S.B.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3127-3132
    • /
    • 2021
  • Feasibility study of burn-up analysis and monitoring using delayed fast neutrons was investigated at Missouri University of Science and Technology Reactor (MSTR). Burnt and fresh fuel elements were used to collect delayed fast neutron data for different power levels. Total reactivity varied depending on the burn-up rate of fuel elements for each core configuration. The regulating rod worth was 2.07E-04 𝚫k/k/in and 1.95E-04 𝚫k/k/in for T121 and T122 core configurations at 11 inch, respectively. Delayed fast neutron spectrum of F1 (burnt) and F16 (fresh) fuel elements were analyzed further, and a strong correlation was observed between delayed fast neutron emission and burn-up. According to the analyzed peaks in burnt and fresh fuels, reactor power dependency was observed and it was determined that delayed neutron provided more reliable results at reactor powers of 50 kW and above.

Determination of plutonium and uranium content and burnup using six group delayed neutrons

  • Akyurek, T.;Usman, S.
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.943-948
    • /
    • 2019
  • In this study, investigation of spent fuel was performed using six group delayed neutron parameters. Three used fuels (F1, F2, and F11) which are burnt over the years in the core of Missouri University of Science and Technology Reactor (MSTR), were investigated. F16 fresh fuel was used as plutonium free fuel element and compared with irradiated used fuels to develop burnup and Pu discrimination method. The fast fission factor of the MSTR was calculated to be 1.071 which was used for burnup calculations. Burnup values of F2 and F11 fuel elements were estimated to be 1.98 g and 2.7 g, respectively. $^{239}Pu$ conversion was calculated to be 0.36 g and 0.50 g for F2 and F11 elements, respectively.

Study of neutron energy and directional distribution at the Beloyarsk NPP selected workplaces

  • Pyshkina, Mariia;Vasilyev, Aleksey;Ekidin, Aleksey;Nazarov, Evgeniy;Nikitenko, Vitaly;Pudovkin, Anton
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1723-1729
    • /
    • 2021
  • Energy and directional distribution of neutrons at the Beloyarsk NPP workplaces is a subject of this study. Measurements of H*(10) rate and neutron energy distribution were taken at 8 workplaces, which can be divided into three categories: work with spent or fresh nuclear fuel, work with radionuclide neutron sources, work at the rooms adjusted to reactors. The Hp(10) measurements were performed only at 6 out of 8 locations, due to the fact that long term placing of an effective neutron moderator in fresh nuclear fuel storage facility is forbidden. As a result of the research energy and direction distribution of the neutron fields at 8 locations of the Beloyarsk NPP workplaces was obtained. To estimate the accuracy of the H*(10) rate and Hp (10) measurements the reference values of dose equivalents were calculated using energy and directional distribution. To take into account the difference between the reference values and the measured results site-specific correction factors were calculated.

극저준위 감마선 분광시스템의 백그라운드 저감화를 위한 중성자 차폐체 설계 (Design of Neutron Shielder for Reducing Background of Low Level Gamma Ray Spectrometer)

  • 김태욱;박종묵;박종길;신상운;전재식
    • Journal of Radiation Protection and Research
    • /
    • 제26권2호
    • /
    • pp.67-71
    • /
    • 2001
  • 극저준위 방사능측정시스템의 백그라운드에 영향을 주는 중성자를 차폐하기 위한 차폐체를 설계하였다. 중성자 차폐방법은 고 밀도 폴리에틸렌을 이용하여 고속중성자를 감속한 후 $B_4C$를 이용하여 감속된 열중성자를 흡수하는 방법을 이용하였다. 몬테카를로 모사방법인 MCNP4B 코드를 이용하여 계산한 결과 고 밀도 폴리에틸렌의 두께가 10 cm 일 때 열중성자속이 최대가 되는 것으로 나타났으며 감속된 중성자의 흡수는 용제에 자연상태의 $B_4C$ 분말을 30 w% 섞을 경우 2 mm의 두께에서 94%의 중성자 흡수가 일어나는 것으로 나타났다. 또한 몬테카를로 모사를 통한 계산결과의 타당성 여부를 조사하기 위하여 중성자 차폐실험 장치를 제작하여 실험 결과와 비교하였으며, 비교 결과 실험값과 일치하는 것으로 나타났다.

  • PDF

액체금속 피동냉각유동모사 실증설비의 개발 (Development of Liquid Metal Passive Cooling Flow Simulation System)

  • 류경하;김재형;이태현;이상혁;반병민
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권4호
    • /
    • pp.257-264
    • /
    • 2015
  • 원자력 발전이 중요한 에너지 공급역할을 담당하기 위해서는 안전성을 확보하고, 사용 후 핵연료 문제를 해결하여야 한다. 이와 같은 문제를 해결하기 위한 방안으로 소듐이나 납비스무스 공융합금 등과 같은 액체금속을 냉각재로 이용하는 방안이 연구되고 있다. 본 논문에서는 액체금속 유동모사 실증 설비 개발을 위한 설계변수 검토, 설계 해석, 구조재의 선정 및 설비 개발 결과를 서술하였다. 설비의 개발은 열수력 해석코드의 해석을 통해 수행되었고 충분한 자연순환 유량을 갖는 설비제작 기술을 확보하였다.

Improvement of Switching Speed of a 600-V Nonpunch-Through Insulated Gate Bipolar Transistor Using Fast Neutron Irradiation

  • Baek, Ha Ni;Sun, Gwang Min;Kim, Ji suck;Hoang, Sy Minh Tuan;Jin, Mi Eun;Ahn, Sung Ho
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.209-215
    • /
    • 2017
  • Fast neutron irradiation was used to improve the switching speed of a 600-V nonpunch-through insulated gate bipolar transistor. Fast neutron irradiation was carried out at 30-MeV energy in doses of $1{\times}10^8n/cm^2$, $1{\times}10^9n/cm^2$, $1{\times}10^{10}n/cm^2$, and $1{\times}10^{11}n/cm^2$. Electrical characteristics such as current-voltage, forward on-state voltage drop, and switching speed of the device were analyzed and compared with those prior to irradiation. The on-state voltage drop of the initial devices prior to irradiation was 2.08 V, which increased to 2.10 V, 2.20 V, 2.3 V, and 2.4 V, respectively, depending on the irradiation dose. This effect arises because of the lattice defects generated by the fast neutrons. In particular, the turnoff delay time was reduced to 92 nanoseconds, 45% of that prior to irradiation, which means there is a substantial improvement in the switching speed of the device.

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF