• 제목/요약/키워드: Fast neutron detection

검색결과 26건 처리시간 0.022초

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

CHARACTERISTICS OF FABRICATED SiC RADIATION DETECTORS FOR FAST NEUTRON DETECTION

  • Lee, Cheol-Ho;Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Park, Hyeon-Seo;Kim, Gi-Dong;Park, June-Sic;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • 제37권2호
    • /
    • pp.70-74
    • /
    • 2012
  • Silicon carbide (SiC) is a promising material for neutron detection at harsh environments because of its capability to withstand strong radiation fields and high temperatures. Two PIN-type SiC semiconductor neutron detectors, which can be used for nuclear power plant (NPP) applications, such as in-core reactor neutron flux monitoring and measurement, were designed and fabricated. As a preliminary test, MCNPX simulations were performed to estimate reaction probabilities with respect to neutron energies. In the experiment, I-V curves were measured to confirm the diode characteristic of the detectors, and pulse height spectra were measured for neutron responses by using a $^{252}Cf$ neutron source at KRISS (Korea Research Institute of Standards and Science), and a Tandem accelerator at KIGAM (Korea Institute of Geoscience and Mineral Resources). The neutron counts of the detector were linearly increased as the incident neutron flux got larger.

Neutron spectroscopy using pure LaCl3 crystal and the dependence of pulse shape discrimination on Ce-doped concentrations

  • Vuong, Phan Quoc;Kim, Hongjoo;Luan, Nguyen Thanh;Kim, Sunghwan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3784-3789
    • /
    • 2021
  • We report a simple technique for direct neutron spectroscopy using pure LaCl3 crystals. Pure LaCl3 crystals exhibit considerably better pulse shape discrimination (PSD) capabilities with relatively good energy resolution as compared with Ce-doped LaCl3 crystals. Single crystals of pure and Ce-doped LaCl3 were grown using an inhouse-developed Bridgman furnace. PSD capabilities of these crystals were investigated using 241Am and 137Cs sources. Fast neutron detection was tested using a252Cf source and three separate bands corresponding to electron, proton, and alpha were observed. The proton band induced by the 35Cl(n,p)35S reaction can be used for direct neutron spectroscopy because proton energy is proportional to incident neutron energy. Owing to good scintillation performance and excellent PSD capabilities, pure LaCl3 is a promising candidate for space detectors and other applications that necessitate gamma/fast neutron discrimination capability.

Measuring and unfolding fast neutron spectra using solution-grown trans-stilbene scintillation detector

  • Nguyen Duy Quang;HongJoo Kim;Phan Quoc Vuong;Nguyen Duc Ton;Uk-Won Nam;Won-Kee Park;JongDae Sohn;Young-Jun Choi;SungHwan Kim;SukWon Youn;Sung-Joon Ye
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1021-1030
    • /
    • 2023
  • We propose an overall procedure for measuring and unfolding fast neutron spectra using a trans-stilbene scintillation detector. Detector characterization was described, including the information on energy calibration, detector resolution, and nonproportionality response. The digital charge comparison method was used for the investigation of neutron-gamma Pulse Shape Discrimination (PSD). A pair of values of 600 ns pulse width and 24 ns delay time was found as the optimized conditions for PSD. A fitting technique was introduced to increase the trans-stilbene Proton Response Function (PRF) by 28% based on comparison of the simulated and experimental electron-equivalent distributions by the Cf-252 source. The detector response matrix was constructed by Monte-Carlo simulation and the spectrum unfolding was implemented using the iterative Bayesian method. The unfolding of simulated and measured spectra of Cf-252 and AmBe neutron sources indicates reliable, stable and no-bias results. The unfolding technique was also validated by the measured cosmic-ray induced neutron flux. Our approach is promising for fast neutron detection and spectroscopy.

Development of an efficient method of radiation characteristic analysis using a portable simultaneous measurement system for neutron and gamma-ray

  • Jin, Dong-Sik;Hong, Yong-Ho;Kim, Hui-Gyeong;Kwak, Sang-Soo;Lee, Jae-Geun;Jung, Young-Suk
    • 분석과학
    • /
    • 제35권2호
    • /
    • pp.69-81
    • /
    • 2022
  • The method of measuring and classifying the energy category of neutrons directly using raw data acquired through a CZT detector is not satisfactory, in terms of accuracy and efficiency, because of its poor energy resolution and low measurement efficiency. Moreover, this method of measuring and analyzing the characteristics of low-energy or low-activity gamma-ray sources might be not accurate and efficient in the case of neutrons because of various factors, such as the noise of the CZT detector itself and the influence of environmental radiation. We have therefore developed an efficient method of analyzing radiation characteristics using a neutron and gamma-ray analysis algorithm for the rapid and clear identification of the type, energy, and radioactivity of gamma-ray sources as well as the detection and classification of the energy category (fast or thermal neutrons) of neutron sources, employing raw data acquired through a CZT detector. The neutron analysis algorithm is based on the fact that in the energy-spectrum channel of 558.6 keV emitted in the nuclear reaction 113Cd + 1n → 114Cd + in the CZT detector, there is a notable difference in detection information between a CZT detector without a PE modulator and a CZT detector with a PE modulator, but there is no significant difference between the two detectors in other energy-spectrum channels. In addition, the gamma-ray analysis algorithm uses the difference in the detection information of the CZT detector between the unique characteristic energy-spectrum channel of a gamma-ray source and other channels. This efficient method of analyzing radiation characteristics is expected to be useful for the rapid radiation detection and accurate information collection on radiation sources, which are required to minimize radiation damage and manage accidents in national disaster situations, such as large-scale radioactivity leak accidents at nuclear power plants or nuclear material handling facilities.

NEUTRON-INDUCED CAVITATION TENSION METASTABLE PRESSURE THRESHOLDS OF LIQUID MIXTURES

  • Xu, Y.;Webster, J.A.;Lapinskas, J.;Taleyarkhan, R.P.
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.979-988
    • /
    • 2009
  • Tensioned metastable fluids provide a powerful means for low-cost, efficient detection of a wide range of nuclear particles with spectroscopic capabilities. Past work in this field has relied on one-component liquids. Pure liquids may provide very good detection capability in some aspects, such as low thresholds or large radiation interaction cross sections, but it is rare to find a liquid that is a perfect candidate on both counts. It was hypothesized that liquid mixtures could offer optimal benefits and present more options for advancement. However, not much is known about radiation-induced thermal-hydraulics involving destabilization of mixtures of tensioned metastable fluids. This paper presents results of experiments that assess key thermophysical properties of liquid mixtures governing fast neutron radiation-induced cavitation in liquid mixtures. Experiments were conducted by placing liquid mixtures of various proportions in tension metastable states using Purdue's centrifugally-tensioned metastable fluid detector (CTMFD) apparatus. Liquids chosen for this study covered a good representation of both thermal and fast neutron interaction cross sections, a range of cavitation onset thresholds and a range of thermophysical properties. Experiments were devised to measure the effective liquid mixture viscosity and surface tension. Neutron-induced tension metastability thresholds were found to vary non-linearly with mixture concentration; these thresholds varied linearly with surface tension and inversely with mixture vapor pressure (on a semi-log scale), and no visible trend with mixture viscosity nor with latent heat of vaporization.

Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection

  • Jihun Moon;Jisu Kim;Heejun Chung;Sung-Woo Kwak;Kyung Taek Lim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3506-3513
    • /
    • 2023
  • In this paper, we demonstrate the neutron attenuation of dry cask shielding materials using the S670e helium-4 detector manufactured by Arktis Radiation Ltd. In particular, two materials expected to be applied to the TN-32 dry cask manufactured by ORANO Korea and KORAD-21 by the Korea Radioactive Waste Agency (KORAD) were utilized. The measured neutron attenuation was compared with our Monte Carlo N-Particle Transport simulation results, and the difference is given as the root mean square (RMS). For the fast neutron case, a rapid decline in neutron counts was observed as a function of increasing material thickness, exhibiting an exponential relationship. The discrepancy between the experimentally acquired data and simulation results for the fast neutron was maintained within a 2.3% RMS. In contrast, the observed thermal neutron count demonstrated an initial rise, attained a maximum value, and exhibited an exponential decline as a function of increasing thickness. In particular, the discrepancy between the measured and simulated peak locations for thermal neutrons displayed an RMS deviation of approximately 17.3-22.4%. Finally, the results suggest that a minimum thickness of 5 cm for Li-6 is necessary to achieve a sufficiently significant cross-section, effectively capturing incoming thermal neutrons within the dry cask.

THIN-FILM-COATED DETECTORS FOR NEUTRON DETECTION

  • McGregor Douglas S.;Gersch Holly K.;Sanders Jeffrey D.;Klann Raymond T.;Lindsay John T.
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.167-175
    • /
    • 2001
  • Semiconductor diode detectors coated with neutron reactive material are presently under investigation for various uses, such as remote sensing of thermal neutrons, fast neutron counting, and thermal neutron radiography. Theory indicates that single-coated devices can yield thermal neutron efficiencies from 4% to 11 %, which is supported by experimental evidence. Radiation endurance measurements indicate that the devices function well up to a limiting thermal neutron fluence of $10^{13}/cm^2$, beyond which noticeable degradation occurs. Thermal neutron contrast images of step wedges and simple phantoms, taken with dual in-line pixel devices, show promise for thermal neutron imaging detectors.

  • PDF

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

An Improved Proton Recoil Telescope Detector for Fast Neutron Spectroscopy

  • Chung, Moon-Kyu;Kang, Hee-Dong;Park, Tong-Soo
    • Nuclear Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.191-201
    • /
    • 1973
  • MeV 영역의 속중성자분광을 위해 재래의 radiator system을 개량하여 ringshaped vertical radiator와 cone-shaped horizontal radiator를 공용한 특수한 recoil proton radiator assembly를 사용함으로서 energy 분해능의 저하없이 검출효율을 높이도록 recoil Proton telescope detector를 설계ㆍ제작하였다. 이 검출기에는 입사중성자속에 대한 Si(ti) 검출기의 직접노출을 피함으로서 background를 줄일수 있도록 입사중성자차폐부도 고안 내장되어 있다. 이 개량된 recoil proton telescope detector의 검출효율 및 energy 분해능을 중성자 energy 1-15 MeV에 대하여 radiator system과 Si(Li) 검출기사이의 거리변화에 따라 이론적인 계산치로 도출ㆍ표시하였으며, 실험적검증의 예로서 이 거리를 29cm로 하고 중성자 energy를 14.1 MeV로 하였을 때의 검출기의 제특성측정결과를 얻어 분석하였다. 측정결과의 분석에 의하면 이론에서 추정된것처럼 혼합형 radiator system을 사용하였을 때의 검출 효율은 단일 radiator system을 사용한 재래식 검출기의 검출효율의 2.2배의 증가를 보인데 반하여 energy 분해능의 저하는 불과 30%, background의 증가는 약40% 말만임을 알수가 있었다. 또한 측정에 의한 14.1 MeV 중성자에 대한 energy 분해능은 3.9% FWHM었는데, 이는 이논적인 3.7% FWHM와 거의 완전한 일치를 보이고 있음도 입증되였다.

  • PDF