• Title/Summary/Keyword: Fast harmonic estimation

Search Result 7, Processing Time 0.019 seconds

A Fast Harmonic Estimation Method for Low Bit Rate Harmonic Speech Coders

  • Park, Yong-Soo;Youn, Dae-Hee;Kang, Tae-lk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.24-30
    • /
    • 2001
  • This paper describes a fast harmonic estimation, referred to as Delta Adjustment (DA), using a low resolution pitch. The presented DA method is based on modification of the Generalized Dual Excitation (GDE) technique[1] which was proposed to improve speech enhancement performance. We introduce the GDE technique and modify it to be suitable for low bit rate harmonic coding that uses only an integer pitch estimate. Unlike the GDE, the DA matches a frequency-warped version of the original spectrum that conforms to a fixed pitch at all harmonic bands. In addition, complexity and performance of the presented method are described in comparison with those of the conventional Fractional Pitch (FP) based harmonic estimation. Experimental results showed that the DA algorithm significantly reduces the complexity of the FP method while maintaining the performance.

  • PDF

Method Based on Sparse Signal Decomposition for Harmonic and Inter-harmonic Analysis of Power System

  • Chen, Lei;Zheng, Dezhong;Chen, Shuang;Han, Baoru
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.559-568
    • /
    • 2017
  • Harmonic/inter-harmonic detection and analysis is an important issue in power system signal processing. This paper proposes a fast algorithm based on matching pursuit (MP) sparse signal decomposition, which can be employed to extract the harmonic or inter-harmonic components of a distorted electric voltage/current signal. In the MP iterations, the method extracts harmonic/inter-harmonic components in order according to the spectrum peak. The Fast Fourier Transform (FFT) and nonlinear optimization techniques are used in the decomposition to realize fast and accurate estimation of the parameters. First, the frequency estimation value corresponding to the maxim spectrum peak in the present residual is obtained, and the phase corresponding to this frequency is searched in discrete sinusoids dictionary. Then the frequency and phase estimations are taken as initial values of the unknown parameters for Nelder-Mead to acquire the optimized parameters. Finally, the duration time of the disturbance is determined by comparing the inner products, and the amplitude is achieved according to the matching expression of the harmonic or inter-harmonic. Simulations and actual signal tests are performed to illustrate the effectiveness and feasibility of the proposed method.

Efficient Harmonic-CELP Based Low Bit Rate Speech Coder (효율적인 하모닉-CELP 구조를 갖는 저 전송률 음성 부호화기)

  • 최용수;김경민;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.35-47
    • /
    • 2001
  • This paper describes an efficient harmonic-CELP speech coder by taking advantages of harmonic and CELP coders into account. According to frame voicing decision, the proposed harmonic-CELP coder adopts the RP-VSELP coder as a fast CELP in case of an unvoiced frame, or an improved harmonic coder in case of a voiced frame. The proposed coder has main features as follows: simple pitch detection, fast harmonic estimation, variable dimension harmonic vector quantization, perceptual weighting reflecting frequency resolution, fast harmonic synthesis, naturalness control using band voicing, and multi-mode. These features make the proposed coder require very low complexity, compared with HVXC coder To demonstrate the performance of the proposed coder, a 2.4 kbps coder has been implemented and compared with reference coders. From results of informal listening tests, the proposed coder showed good quality while requiring low delay and complexity.

  • PDF

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

An Iterative Technique for Real-Time Tracking of Power System Harmonics

  • Sidhu, T.S.;Zadeh, M.R.D.;Pooranalingam, P.J.;Oh, Yong-Taek
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • An iterative technique based on orthogonal filters and frequency tracking is proposed to estimate harmonic components in power systems. The technique uses frequency interpolation to estimate fundamental frequency and harmonics when the nominal frequency of the signal is a non-integer value. Due to the number of computations involved during the generation of filter coefficients, an offline computation is suggested. Beneficial features of the proposed technique include fixed sampling rate and fixed data window size. The performance of the proposed technique is examined by simulating different power system operating conditions and evaluating the data from these simulations. A technique based on Fast Fourier Transform is also used to estimate the harmonic components for all the simulated signals. These estimates are compared with those obtained from the proposed technique. Results show that the proposed technique can converge to the accurate fundamental frequency and therefore, provide accurate harmonic components even when the fundamental frequency is not equal to the nominal frequency.

Development of Current Harmonics Estimation Method by Considering the Characteristics of Input Voltage (인가전압의 특성을 고려한 주거용 부하의 전류성분 추정기법 개발)

  • Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.181-185
    • /
    • 2011
  • Due to the increasing of nonlinear loads such as converters and inverters connected to the electric power distribution system, and extensive application of harmonic generation sources with power electronic devices, disturbance of the electric power system and its influences on industries have been continuously increasing. Thus, it is difficult to construct accurate load model for active and reactive power in environments with harmonics. In this research, we develop current harmonics estimation method based on Extreme Learning Machine (ELM) with fast learning procedure for residential loads. Using data sets acquired from various residential loads, the proposed method has been intensively tested. As the experimental results, we confirm that the proposed method makes it possible to effective estimate current harmonics for various input voltage.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.