• Title/Summary/Keyword: Fast field echo

Search Result 26, Processing Time 0.037 seconds

SSFP Interferometry (SSFPI) Technique Applied to functional MRI - A Fast and Direct Measurement of Magnetic Susceptibility Effect (SSFPI 기법을 이용한 MR 뇌기능 영상 -고 속의 자화율 효과의 직접적인 측정)

  • 정준영
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 1996
  • We have developed a fast steady state free precession interferometry (SSFPI) technique which is useful for the fMRl (functional Magnetic Resonance Imaging). As is known, SSFP sequence with a suitable adjustment of Vadient (readeut) allows us to measure precession angle 6 which in tw relates to the field inhomogeneity. Combining the two pulses (known as FID and Echo) in FADE (Fast Acquisition Double Echo) sequence, for example, one can obtain the interference term which is directly related to the precession angle It has been known that a fast high resolution magnetic field mapping is possible by use of the modified FADE sequence or SSFPI, and we have attempted to use the SSFPI technique for the susceptibility-induced fMRl. When the method is applied to the susceptibility effect based functional magnetic resonance imaging (fMRl), it was found that the direct susceptibility effect measurement was possible without perturbations such as the backgrounds and inflow effect. In this paper, simulation results and experimental results obtained with 2.0 Tesla MRI system are presented.

  • PDF

High-resolution Spiral-scan Imaging at 3 Tesla MRI (3.0 Tesla 자기공명영상시스템에서 고 해상도 나선주사영상)

  • Kim, P.K.;Lim, J.W.;Kang, S.W.;Cho, S.H.;Jeon, S.Y.;Lim, H.J.;Park, H.C.;Oh, S.J.;Lee, H.K.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.108-116
    • /
    • 2006
  • Purpose : High-resolution spiral-scan imaging is performed at 3 Tesla MRI system. Since the gradient waveforms for the spiral-scan imaging have lower slopes than those for the Echo Planar Imaging (EPI), they can be implemented with the gradient systems having lower slew rates. The spiral-scan imaging also involves less eddy currents due to the smooth gradient waveforms. The spiral-scan imaging method does not suffer from high specific absorption rate (SAR), which is one of the main obstacles in high field imaging for rf echo-based fast imaging methods such as fast spin echo techniques. Thus, the spiral-scan imaging has a great potential for the high-speed imaging in high magnetic fields. In this paper, we presented various high-resolution images obtained by the spiral-scan methods at 3T MRI system for various applications. Materials and Methods : High-resolution spiral-scan imaging technique is implemented at 3T whole body MRI system. An efficient and fast higher-order shimming technique is developed to reduce the inhomogeneity, and the single-shot and interleaved spiral-scan imaging methods are developed. Spin-echo and gradient-echo based spiral-scan imaging methods are implemented, and image contrast and signal-tonoise ratio are controlled by the echo time, repetition time, and the rf flip angles. Results : Spiral-scan images having various resolutions are obtained at 3T MRI system. Since the absolute magnitude of the inhomogeneity is increasing in higher magnetic fields, higher order shimming to reduce the inhomogeneity becomes more important. A fast shimming technique in which axial, sagittal, and coronal sectional inhomogeneity maps are obtained in one scan is developed, and the shimming method based on the analysis of spherical harmonics of the inhomogeneity map is applied. For phantom and invivo head imaging, image matrix size of about $100{\times}100$ is obtained by a single-shot spiral-scan imaging, and a matrix size of $256{\times}256$ is obtained by the interleaved spiral-scan imaging with the number of interleaves of from 6 to 12. Conclusion : High field imaging becomes increasingly important due to the improved signal-to-noise ratio, larger spectral separation, and the higher BOLD-based contrast. The increasing SAR is, however, a limiting factor in high field imaging. Since the spiral-scan imaging has a very low SAR, and lower hardware requirements for the implementation of the technique compared to EPI, it is suitable for a rapid imaging in high fields. In this paper, the spiral-scan imaging with various resolutions from $100{\times}100$ to $256{\times}256$ by controlling the number of interleaves are developed for the high-speed imaging in high magnetic fields.

  • PDF

Magnetic field Inhomogeneity measurement algorithm using magnetic resonance (자기 공명 영상을 이용한 불균일 자계 측정 알고리즘)

  • Kim, H.J.;Kim, C.Y.;Han, S.Y.;Yoon, J.H.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2809-2811
    • /
    • 1999
  • In this paper, we develope an algorithm to calculate field inhomogeneity in MR imaging using a dual fast spin echo pulse sequence. Because phase modulation time can be easily modified with this pulse sequence, high resolution image can be obtained and acquisition time can be reduced compared to gradient echo technique. In the case of phase wrapping in field map, phase corrected using image processing technique. We assume the field pattern to be second order polynomial and apply Pseudo-Inverse equation to calculate second order polynomial coefficients. These coefficients can be used for the shimming of the magnetic field.

  • PDF

Higher Order Shimming for Spiral Scan image (초고속 나선 주사 영상을 위한 고차 Shimming)

  • Kim, Pan-Ki;Jeon, Su-Yeol;Ahn, Chang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.341-342
    • /
    • 2007
  • 3T MRI system에서 고해상도 영상을 얻기 위해서는 magnetic field를 균일하게 만들어야 한다. 특히 초고속 영상 기법인 Spiral scan 방식과 EPI scan 방식에서는 이미지 영역에서의 magnetic field의 inhomogeneity에 의해 영상의 왜곡이 심해진다. 본 논문에서는 magnetic field의 inhomogeneity를 단시간 내에 측정하기 위해 fast spin echo방식의 pulse sequence 제안하고, magnetic field를 분석하기 위한 field map의 구성과, field pattern의 효과적인 분석을 통하여, magnetic field를 균일하게 만드는 방법을 제안한다.

  • PDF

Comparison Study of Image Performance with Contrast Agent Contents for Brain Magnetic Resonance Imaging

  • Lee, Youngjin;Choi, Min Hyeok;Goh, Hee Jin;Han, Dong-Kyoon
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.281-285
    • /
    • 2016
  • The purpose of study was to evaluate SNR and CNR with different contrast agent contents (1.0 mmol/mL gadobutrol and 0.5 mmol/mL gadoterate meglumine) for spin echo (SE) and 3-dimension contrast-enhanced fast field echo (3D CE-FFE) pulse sequences. In this study, we compared the SNR and the CNR between 0.5 mmol/mL gadoterate meglumine and 1.0 mmol/mL gadobutrol according to the concentration of contrast agent in brain MRI. When we compared between SE and 3D CE-FFE pulse sequences, the higher SNR and CNR using 3D CE-FFE pulse sequence can be acquire regardless of contrast agent contents. Also, a statistically significant difference was found for SNR and CNR between all protocols. In conclusion, our results demonstrated that the SNR and CNR have not risen proportionately with contrast agent contents. We hope that these results presented in this paper will contribute to decide contrast agent contents for brain MRI.

Development of Birdcage RF coil for 3T Animal MR Imaging

  • 추명자;최보영;강세권;최치봉;이형구;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.2
    • /
    • pp.85-89
    • /
    • 2002
  • We authors developed a new small-size birdcage RF coil for animal MR images. And we compared signal-to-noise ratio (SNR) of the new small coil with a conventional knee coil. The dimension of the low-pass type birdcage coil with 12 elements at 37 MRI system are 13 cm outer diameter, 12 cm inner diameter and 20 cm length. For each element, the width of copper tape is 0.05 mm, thickness is 8 mm and length is 20 cm. The small birdcage coil with 12 elements exhibited 7 resonance modes. The isolation of the quadrature channel could be achieved more than 20 ㏈. The coil quality factor (Q value) was 98.6. The SNR of the animal coil was 243.2 on the average and was about twice as high as the conventional knee coil. The present study successfully demonstrated that the small birdcage coil could provide high quality animal MR images with the improved SNR. Therefore, it is expected that the small birdcage coil could be used in the clinical diagnosis and research studies for veterinary medicine in the near future.

  • PDF

Silent Magnetic Resonance Imaging Using Rotating and Projection Reconstruction (회전 경사자계와 사상 재구성을 이용한 무소음 자기 공명 영상법)

  • Chung, S.T.;Park, S.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.555-558
    • /
    • 1997
  • A new approach to silent MR imaging using a rotating DC gradient has been explored and experimentally studied. As is known, acoustic or sound noise has been one of the major problems in handling patients, mainly due to the fast gradient pulsings in interaction with the main magnetic field. The sound noise is also proportionally louder as the magnetic field strength becomes larger. In this article, we have described a new imaging technique using a mechanically rotating DC gradient coil as an approach toward silent MR imaging, i.e., a mechanically rotated DC gradient effectively replaces both the phase encoding as well as the readout gradient pulsings and data obtained in this manner provides a set of project ion data which later can be used or the projection reconstructionorwithsomeinterpolation techniques one can also perform conventional 2-D FFT (Fast Fourier Transform) image reconstruction. We found, with this new technique, that the sound noise intensity compared with the conventional imaging technique, such as spin echo sequence, is reduced down to -20.7 dB or about 117.5 times. The experimental pulse sequence and its principle are described and images obtained by the new silent MR imaging technique are reported.

  • PDF

Clinical Usefulness of MR FLAIR Image in Mild Head Injuries (경증 두부외상 환자에서 MR FLAIR 영상의 임상적 유용성)

  • Kim, Sei-Yoon;Whang, Kum;Kim, Hun-Joo;Lee, Myoung-Sup
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.10
    • /
    • pp.1182-1186
    • /
    • 2001
  • Objectives : MR fluid-attenuated inversion recovery(FLAIR) image uses paired long inversion time and relaxation time that nulls the signal from CSF. With nulling of the CSF long echo time readout could be used to increase T2-weighting, hence improving the conspicuousness of most tissue lesions without the deleterious effects of CSF artifact seen on T2 weighted sequence. We examed the usefulness of FALIR image in the diagnosis of mild head injury. Methods : A total of 38 patients with mild head injury were examined by FLAIR image. We compared those images with CT scan and T1, T2-weighted images. Careful observation of MR images were done by two well-trained neuroradiologists. Each image was compared for conspicuousness and detectability of traumatic lesions might have shown abnormal signal intensities. The Wilcoxon signed ranks test was used for statistical evaluation. Results : The FLAIR image was significantly more sensitive than those of other images(p<0.001). T2 FFE(Fast Field Echo) image was more useful for detection of small petechial hemorrhages. Conclusion : FLAIR image is considered to be more sensitive than those of conventional MR images in the evaluation of mild head injuries.

  • PDF

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.