• Title/Summary/Keyword: Fast encoder design

Search Result 29, Processing Time 0.029 seconds

Design and Construction of a Surface Encoder with Dual Sine-Grids

  • Kimura, Akihide;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2007
  • This paper describes a second-generation dual sine-grid surface encoder for 2-D position measurements. The surface encoder consisted of a 2-D grid with a 2-D sinusoidal pattern on its surface, and a 2-D angle sensor that detected the 2-D profile of the surface grid The 2-D angle sensor design of previously developed first-generation surface encoders was based on geometric optics. To improve the resolution of the surface encoder, we fabricated a 2-D sine-grid with a pitch of $10{\mu}m$. We also established a new optical model for the second-generation surface encoder that utilizes diffraction and interference to generate its measured values. The 2-D sine-grid was fabricated on a workpiece by an ultra precision lathe with the assistance of a fast tool servo. We then performed a UV-casting process to imprint the sine-grid on a transparent plastic film and constructed an experimental setup to realize the second-generation surface encoder. We conducted tests that demonstrated the feasibility of the proposed surface encoder model.

Design and Implementation of Binary XML Encoder using Fast Infoset (Fast Infoset을 이용한 Binary XML Encoder의 설계 및 구현)

  • Yu Seong-Jae;Choi Il-Sun;Yoon Haw-Mook;Ahn Byeong-Ho;Jung Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.943-946
    • /
    • 2006
  • XML is the most widely used document format by advantage that self-contained for platform. So, currently the most used among other document format. but XML appeared new problem that memory and transmission. And that be used in environment a request restriction memory and fast transmission as like mobile field. Although discussion of XML binarization is going on progress. And fast Infoset configuration using XML Information Set is receiving attention that a way to lower file size of hold down a existing usage. In this paper, we designed of module using fast Infoset and PER among ASN.1 Encoding Rule for XML binarization. And we implementation of encoder constructed interlace by stage of translation from XML into binary XML.

  • PDF

Design of a nonlinear ADC encoder to reduce the conversion errors in DBNS (DBNS 변환오차를 고려한 비선형 ADC 엔코더 설계)

  • Woo, Kyung-Haeng;Choi, Won-Ho;Kim, Jong-Soo;Choi, Jae-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • A fast multiplier and ADC are essential to process the analog signals in real time. The double-base number system(DBNS) is known as an efficient method for this purpose. The DBNS uses the numbers 2 and 3 as the base numbers simultaneously. The system has an advantage of fast multiplication, less chip area, and low power consumption compared to the binary multiplier. However, the inherent errors of the log number's intrinsic tolerance in DBNS are accumulated in a FIR digital filter, so the signal-to-noise ratio(SNR) has a tendency to be degraded. In this paper, the nonlinear encoder of ADC is designed to compensate the accumulated errors of DBNS by analysing the error distributions of various filter coefficients. The new ADC does not sacrifice its own advantages because the encoder circuits are modified only. The experiments were done with an FIR filters those were designed to have -70dB of SNR in stop band. The proposed nonlinear ADC encoder could drop the SNR to -45dB in stop band, in contrast to -35dB with the linear encoder.

Fast Encoder Design for Multi-view Video

  • Zhao, Fan;Liao, Kaiyang;Zhang, Erhu;Qu, Fangying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2464-2479
    • /
    • 2014
  • Multi-view video coding is an international encoding standard that attains good performance by fully utilizing temporal and inter-view correlations. However, it suffers from high computational complexity. This paper presents a fast encoder design to reduce the level of complexity. First, when the temporal correlation of a group of pictures is sufficiently strong, macroblock-based inter-view prediction is not employed for the non-anchor pictures of B-views. Second, when the disparity between two adjacent views is above some threshold, frame-based inter-view prediction is disabled. Third, inter-view prediction is not performed on boundary macroblocks in the auxiliary views, because the references for these blocks may not exist in neighboring views. Fourth, finer partitions of inter-view prediction are cancelled for macroblocks in static image areas. Finally, when estimating the disparity of a macroblock, the search range is adjusted according to the mode size distribution of the neighboring view. Compared with reference software, these techniques produce an average time reduction of 83.65%, while the bit-rate increase and peak signal-to-noise ratio loss are less than 0.54% and 0.05dB, respectively.

Design of the ICMEP Algorithm for the Highly Efficient Entropy Encoding (고효율 엔트로피 부호화를 위한 ICMEP 알고리즘 설계)

  • 이선근;임순자;김환용
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.4
    • /
    • pp.75-82
    • /
    • 2004
  • The channel transmission ratio is speeded up by the combination of the Huffman algorithm, the model scheme of the lossy transform having minimum average code lengths for the image information and good instantaneous decoding capability, with the Lempel-Ziv algorithm showing the fast processing performance during the compression process. In order to increase the processing speed during the compression process, ICMEP algorithm is proposed and the entropy encoder of HDTV is designed and inspected. The ICMEP entropy encoder have been designed by choosing the top-down method and consisted of the source codes and the test benches by the behavior expression with VHDL. As a simulation results, implemented ICMEP entropy encoder confirmed that whole system efficiency by memory saturation prevention and compressibility increase improves.

Design of a TIQ Based CMOS A/D Converter for Real Time DSP (실시간 디지털 신호처리를 위한 TIQ A/D 변환기 설계)

  • Kim, Jong-Soo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.205-210
    • /
    • 2007
  • This paper presents a CMOS TIQ flash A/D converter which operates very fast compared to other types of A/D converters due to its parallel architecture. The output resolution of designed A/D converter is 6-bit. In order to reduce the power consumption and chip area of conventional flash A/D converter, TIQ based flash A/D converter is proposed, which uses the advantage of the structure of CMOS transistors. The length and width of transistors of TIQ were determined with HSPICE simulation. To speed up the ultra-high speed flash A/D converter, the Fat Tree Encoder technique is used. The TIQ A/D converter was designed with full custom method. The chip's maximum power consumption was 38.45mW at 1.8V, and the operating speed of simulation was 2.7 GSPS.

  • PDF

VLSI design of a FNNPDS encoder for vector quantization (벡터양자화를 위한 FNNPDS 인코더의 VLSI 설계)

  • Kim Hyeung-Cheol;Shim Jeong-Bo;Jo Je-Hwang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.83-88
    • /
    • 2005
  • We propose the design method for the VLSI architecture of FNNPDS combined PDS(partial distance search) and FNNS(fast nearest neighbor search), which are used to fast encoding in vector quantization, and obtain the results that FNNPDS(fast nearest neighbor partial distance search) is faster method than the conventional methods by simulation. In simulations, we investigate timing diagrams described searching time of the nearest codevector for an input vector, and compare the average clock cycles per input vector for Lena and Peppers images. According to the result of simulations, the number of the clock cycle of FNNPDS was reduced to $79.2\%\~11.7\%$ as compared with the number using the conventional techniques.

A Study on the Hardware Design of High-Throughput HEVC CABAC Binary Arithmetic Encoder (높은 처리량을 갖는 HEVC CABAC 이진 산술 부호화기의 하드웨어 설계에 관한 연구)

  • Jo, Hyun-gu;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.401-404
    • /
    • 2016
  • This paper proposes entropy coding method of HEVC CABAC Encoder for efficient hardware architecture. The Binary Arithmetic Encoder requires data dependency at each step, which is difficult to be operated in a fast. Proposed Binary Arithmetic Encoder is designed 4 stage pipeline to quickly process the input value bin. According to bin approach, either MPS or LPS is selected and the binary arithmetic encoding is performed. Critical path caused by repeated operation is reduced by using the LUT and designed as a shift operation which decreases hardware size and not using memory. The proposed Binary Arithmetic Encoder of CABAC is designed using Verilog-HDL and it was implemented in 65nm technology. Its gate count is 3.17k and operating speed is 1.53GHz.

  • PDF

MP3 Encoder Chip Design Based on HW/SW Co-Design (하드웨어 소프트웨어 Co-Design을 통한 MP3 부호화 칩 설계)

  • Park Jong-In;Park Ju Sung;Kim Tae-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.61-71
    • /
    • 2006
  • An MP3 encoder chip has been designed and fabricated with the hardware and software co-design concepts. In the aspect of the software. the calculation cycles of the distortion control loop. which requires most of the calculation cycles in MP3 encoding procedure. have been reduced to $67\%$ of the original algorithm through the 'scale factor Pre-calculation'. By using a floating Point 32 bit DSP core and designing the FFT block with the hardware. we can get the additional reduction of the calculation cycles in addition to the software optimization. The designed chip has been verified using HW emulation and fabricated via 0.25um CMOS technology The fabricated chip has the size of $6.2{\time}6.2mm^2$ and operates normally on the test board in the qualitative and quantitative aspect.

New Multiplier for a Double-Base Number System Linked to a Flash ADC

  • Nguyen, Minh-Son;Kim, In-Soo;Choi, Kyu-Sun;Lim, Jae-Hyun;Choi, Won-Ho;Kim, Jong-Soo
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.256-259
    • /
    • 2012
  • The double-base number system has been used in digital signal processing systems for over a decade because of its fast inner product operation and low hardware complexity. This letter proposes an innovative multiplier architecture using hybrid operands. The multiplier can easily be linked to flash analog-to-digital converters or digital systems through a double-base number encoder (DBNE) for realtime signal processing. The design of the DBNE and the multiplier enable faster digital signal processing and require less hardware resources compared to the binary processing method.