• Title/Summary/Keyword: Fast Wavelet Transform

Search Result 155, Processing Time 0.021 seconds

A Study on Application of Wavelet Transform to Electrical Load Discriminations (부하 판별을 위한 Wavelet 변환의 응용에 관한 연구)

  • 정종원;김민성;김태홍;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.109-112
    • /
    • 2001
  • Recently, the subject of \"wavelet analysis\" has drawn much attention from both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Statistics and ets. Analogous to Fourier analysis, wavelets is a versatile tool with very rich mathematical content and great potential for applications. Specially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. In this paper, discrimination analyses of acquired electrical current signals for each and mixed loads were tried by using Morlet wavelet transform. Their representative loads were classified as TV, DRY(Dryer), REF(Refrigerate), and FL(Fluorescent Lamp).

  • PDF

A study on a FPGA based implementation of the 2 dimensional discrete wavelet transform using a fast lifting scheme algorithm for the JPEG2000 image compression (JPEG2000 영상압축을 위한 리프팅 설계 알고리즘을 이용한 2차원 이산 웨이블릿 변환 프로세서의 FPGA 구현에 대한 연구)

  • 송영규;고광철;정제명
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2315-2318
    • /
    • 2003
  • The Wavelet Transform has been applied in mathematics and computer sciences. Numerous studies have proven its advantages in image processing and data compression, and have made it a basic encoding technique in data compression standards like JPEG2000 and MPEG-4. Software implementations of the Discrete Wavelet Transform (DWT) appears to be the performance bottleneck in real-time systems in terms of performance. And hardware implementations are not flexible. Therefore, FPGA implementations of the DWT has been a topic of recent research. The goal of this thesis is to investigate of FPGA implementations of the DWT Processor for image compression applications. The DWT processor design is based on the Lifting Based Wavelet Transform Scheme, which is a fast implementation of the DWT The design uses various techniques. The DWT Processor was simulated and implemented in a FLEX FPGA platform of Altera

  • PDF

Digital Image Processing Using Tunable Q-factor Discrete Wavelet Transformation (Q 인자의 조절이 가능한 이산 웨이브렛 변환을 이용한 디지털 영상처리)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • This paper describes a 2D discrete-time wavelet transform for which the Q-factor is easily specified. Hence, the transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. The tunable Q-factor wavelet transform (TQWT) is a fully-discrete wavelet transform for which the Q-factor, Q, of the underlying wavelet and the asymptotic redundancy (over-sampling rate), r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The TQWT can also be used as an easily-invertible discrete approximation of the continuous wavelet transform. The transform is based on a real valued scaling factor (dilation-factor) and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its oversampling rate (redundancy), with modest oversampling rates (e. g. 3-4 times overcomplete) being sufficient for the analysis/synthesis functions to be well localized. Therefore, This method services good performance in image processing fields.

Time Delay Estimation using Wavelet Transform (웨이블릿 변환을 이용한 시간 지연 추정법)

  • Kim Doh-Hyoung;Park Youngjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.165-168
    • /
    • 2000
  • A fast estimation method using wavelet transform for a time delay system is proposed. Main point of this method is to get the wavelet transform of the correlation between the input signal and delayed signal using transformed signals. But wavelet transform using Haar wavelet functions has basis with different phases and can offers a bisection method to estimate a time delay of a signal. Selective computation of the transform of correlation is performed and the computational complexity is reduced. Computational order of this method is O(N log N) and it is much love. than a simple correlation esimation when the length of signal is long.

  • PDF

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

Ventricle Image Restoration and Enhancement with Multi-thresholding and Multi-Filtering

  • Ryu, Kwang-Ryol;Jung, Eun-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.231-234
    • /
    • 2009
  • Speckle noise reduction for power Doppler ventricle coherent image for restoration and enhancement using Fast Wavelet Transform with multi-thresholding and multi-filtering on the each subbands is presented. Fast Wavelet Transform divides into low frequency component image to high frequency component image to be multi-resolved. Speckle noise is located on high frequency component in multi-resolution image mainly. A Doppler ventricle image is transformed and inversed with separated threshold function and filtering from low to high resolved images for restoration to utilize visualization for ventricle diagnosis. The experimental result shows that the proposed method has better performance in comparison with the conventional method.

Thangka Image Inpainting Algorithm Based on Wavelet Transform and Structural Constraints

  • Yao, Fan
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1129-1144
    • /
    • 2020
  • The thangka image inpainting method based on wavelet transform is not ideal for contour curves when the high frequency information is repaired. In order to solve the problem, a new image inpainting algorithm is proposed based on edge structural constraints and wavelet transform coefficients. Firstly, a damaged thangka image is decomposed into low frequency subgraphs and high frequency subgraphs with different resolutions using wavelet transform. Then, the improved fast marching method is used to repair the low frequency subgraphs which represent structural information of the image. At the same time, for the high frequency subgraphs which represent textural information of the image, the extracted and repaired edge contour information is used to constrain structure inpainting in the proposed algorithm. Finally, the texture part is repaired using texture synthesis based on the wavelet coefficient characteristic of each subgraph. In this paper, the improved method is compared with the existing three methods. It is found that the improved method is superior to them in inpainting accuracy, especially in the case of contour curve. The experimental results show that the hierarchical method combined with structural constraints has a good effect on the edge damage of thangka images.

A Study on the Application of Wavelet Transform to Faults Current Discrimination (Wavelet 변환을 이용한 고장 전류의 판별에 관한 연구)

  • Jeong, Jong-Won;Jo, Hyun-Woo;Kim, Tae-Woo;Lee, Joon-Tark
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.427-430
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to Fourier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier,and more useful method than the FFT (Fast Fourier Transform).

A fast M-band discrete wavelet transform algorithm using factorization of lossless matrix when the length of bases equals to 2M (기저의 길이 L=2M인 경우 무손실 행렬의 분해를 이용한 고속 M-대역 이산 웨이브렛 변환 알고리즘)

  • 권상근;이동식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2706-2713
    • /
    • 1997
  • The fast implementation algorithm of M-band discrete wavelet transform is propsed using the factorization of lossless matrix when the length of discrete orthogonal wavelet bases equals to 2M. In computational complexity when direct filtering method is employed, the number of multiplicationand addition is (2M$^{2}$) and (2M$^{2}$ -M), respectively. But by proposed algorithm, it can be reduced to (M$^{2}$+M) and (M$^{2}$+2M-1), respectively. and it is possible to reduce the compuatational complexity further when unitary matrix employed to design the discrete or thogonal wavelet basis has the fast algorithm.

  • PDF

An Analysis of Partial Discharge signal Using Wavelet Transforms (웨이블렛 변환을 이용한 부분 방전 신호 분석)

  • 박재준;장진강;임윤석;심종탁;김재환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.169-172
    • /
    • 1999
  • Recently, the wavelet transform has been a new and powerful tool for signal processing. It is more suitable specially for the feature extraction and detection of non-stationary signals than traditional methods such as, the Fourier Transform(FT), the Fast Fourier Transform(FFT) and the Least Square Method etc. because of the characteristic of the multi-scale analysis and time-frequency domain localization. The wavelet transform has been developed for the analysis of PD pulse signal to raise in the progress of insulation degradation. In this paper, the wavelet transform was applied to one foundational method for feature extraction. For the obtain experimental data, a computer-aided partial discharge measurement system with a single acoustic sensor was used. If we are applying to the neural network method the accumulated data through the extracted feature, it is expected that we can detect the PD pulse signal in the insulation materials on the on-line.

  • PDF