• Title/Summary/Keyword: Fast Visualization

Search Result 139, Processing Time 0.034 seconds

Real-time Flow Animation Techniques Using Computational Fluid Dynamics (전산유체역학을 이용한 실시간 유체 애니메이션 기술)

  • Kang Moon Koo
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 2004
  • With all the recent progresses in computer hardware and software technology, the animation of fluids in real-time is still among the most challenging issues of computer graphics. The fluid animation is carried out in two steps - the physical simulation of fluids immediately followed by the visual rendering. The physical simulation is usually accomplished by numerical methods utilizing the particle dynamics equations as well as the fluid mechanics based on the Navier-Stokes equations. Particle dynamics method is usually fast in calculation, but the resulting fluid motion is conditionally unrealistic. The methods using Navier-Stokes equation, on the contrary, yield lifelike fluid motion when properly conditioned, yet the complexity of calculation restrains this method from being used in real-time applications. This article presents a rapid fluid animation method by using the continuum-based fluid mechanics and the enhanced particle dynamics equations. For real-time rendering, pre-integrated volume rendering technique was employed. The proposed method can create realistic fluid effects that can interact with the viewer in action, to be used in computer games, performances, installation arts, virtual reality and many similar multimedia applications.

  • PDF

Quantitation of Antigen-Antibody Reaction Condition for Development of Fluorescence Image-based CD4 Rapid Test (형광 영상 기반 CD4 신속 검사법 개발을 위한 항원-항체 반응 조건 정량화)

  • Kim, Subin;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • CD4+ T-cell count determines the effectiveness for antiretroviral therapy (ART) in patients with human immunodeficiency virus (HIV). Although ART slows the progression of HIV to AIDS, rapid counting of CD4+ T lymphocytes with a drop of patient's blood sample is urgently needed to ensure timely ART treatment in rural areas. Recently point-of-care CD4 testing devices have been developed by using non-flow based imaging cytometer incorporated with a sample cartridge where CD4+ T cells are reacted with fluorescently tagged specific antibodies. Here we conducted an experimental study using a conventional fluorescence microscope-based imaging system to quantitate the interaction of CD4 antibodies with CD4+ T cells at different reaction conditions. We demonstrated that a fast and affordable point-of-care CD4 test is feasible with a far less amount of antibodies and a shorter incubation time compared with a conventional sample preparation protocol for flow cytometry. We also proposed a general method to evaluate and compare the detection limit across different CD4 counting platforms by using fluorescently labelled microbeads for intensity calibration.

Detection and Classification of Demagnetization and Short-Circuited Turns in Permanent Magnet Synchronous Motors

  • Youn, Young-Woo;Hwang, Don-Ha;Song, Sung-ju;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1614-1622
    • /
    • 2018
  • The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.

Topology optimization on vortex-type passive fluidic diode for advanced nuclear reactors

  • Lim, Do Kyun;Song, Min Seop;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1279-1288
    • /
    • 2019
  • The vortex-type fluidic diode (FD) is a key safety component for inherent safety in various advanced reactors such as the sodium fast reactor (SFR) and the molten salt reactor (MSR). In this study, topology optimization is conducted to optimize the design of the vortex-type fluidic diode. The optimization domain is simplified to 2-dimensional geometry for a tangential port and chamber. As a result, a design with a circular chamber and a restrictor at the tangential port is obtained. To verify the new design, experimental study and computational fluid dynamics (CFD) analysis were conducted for inlet Reynolds numbers between 2000 and 6000. However, the results show that the performance of the new design is no better than the original reference design. To analyze the cause of this result, detailed analysis is performed on the velocity and pressure field using flow visualization experiments and 3-D CFD analysis. The results show that the discrepancy between the optimization results in 2-D and the experimental results in 3-D originated from exclusion of an important pressure loss contributor in the optimization process. This study also concludes that the junction design of the axial port and chamber offers potential for improvement of fluidic diode performance.

Measurement of RBC (red blood cell) deformability using 3D Printed Chip combined with Smartphone (스마트 폰 기반 3D 프린팅 칩을 이용한 적혈구 변형성 측정)

  • Lee, Suhwan;Hong, Hyeonji;Yeom, Eunseop;Song, Jae Min
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.103-108
    • /
    • 2020
  • RBC (red blood cell) deformability is one of factors inducing blood shear thinning effect. Reduction of RBC deformability increases blood viscosity in high shear region. In this study, 3D printed chip with proper distribution of wall shear rate (WSR) was proposed to measure RBC deformability of blood samples. To fabricate 3D printed chip, the design of 3D printed chip determined through numerical simulation was modified based on the resolution of the 3D printer. For the estimation of pressure drop in the 3D printed chip, two bypass outlets with low and high WSR are exposed to atmospheric pressure through the needles. By positioning the outlet of needles in the gravity direction, the formation of droplets at bypass outlets can be captured by smartphone. Through image processing and fast Fourier transform (FFT) analysis, the frequency of droplet formation was analyzed. Since the frequency of droplet formation is related with the pressure at bypass, high pressure drop caused by reduction of RBC deformability can be estimated by monitoring the formation of blood droplets using the smartphone.

Q-omics: Smart Software for Assisting Oncology and Cancer Research

  • Lee, Jieun;Kim, Youngju;Jin, Seonghee;Yoo, Heeseung;Jeong, Sumin;Jeong, Euna;Yoon, Sukjoon
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.843-850
    • /
    • 2021
  • The rapid increase in collateral omics and phenotypic data has enabled data-driven studies for the fast discovery of cancer targets and biomarkers. Thus, it is necessary to develop convenient tools for general oncologists and cancer scientists to carry out customized data mining without computational expertise. For this purpose, we developed innovative software that enables user-driven analyses assisted by knowledge-based smart systems. Publicly available data on mutations, gene expression, patient survival, immune score, drug screening and RNAi screening were integrated from the TCGA, GDSC, CCLE, NCI, and DepMap databases. The optimal selection of samples and other filtering options were guided by the smart function of the software for data mining and visualization on Kaplan-Meier plots, box plots and scatter plots of publication quality. We implemented unique algorithms for both data mining and visualization, thus simplifying and accelerating user-driven discovery activities on large multiomics datasets. The present Q-omics software program (v0.95) is available at http://qomics.sookmyung.ac.kr.

Design of Mixed Reality Visualization System for Operational Situation Using Cloud-based Geospatial Information (클라우드 기반 지리공간정보를 활용한 작전상황 혼합현실 가시화 시스템 설계)

  • Youngchan Jang;Jaeil Park;Eunji Cho;Songyun Kwak;Sang Heon Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.60-69
    • /
    • 2024
  • The importance of geospatial information is increasingly highlighted in the defense domain. Accurate and up-to-date geospatial data is essential for situational awareness, target analysis, and mission planning in millitary operations. The use of high-resolution geospatial data in military operations requires large storage and fast image processing capabilities. Efficient image processing is required for tasks such as extracting useful information from satellite images and creating 3D terrain for mission planning, In this paper, we designed a cloud-based operational situation mixed reality visualization system that utilizes large-scale geospatial information distributed processed on a cloud server based on the container orchestration platform Kubernetes. We implemented a prototype and confirmed the suitability of the design.

Numerical study on battery thermal management system using phase change material with oscillating heat pipe (상변화물질과 맥동형 히트 파이프를 이용한 배터리 열 관리 시스템에 대한 수치해석적 연구)

  • Seung Hyun Park;Min Gi Chu;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.104-114
    • /
    • 2024
  • To effectively control heat generation resulting from advancements in fast discharging technology for electric vehicle batteries, hybrid Battery Thermal Management Systems (BTMS) are gaining attention. In this study, a BTMS combining Phase Change Material (PCM) with Oscillating Heat Pipe (OHP) was designed. During the phase change process of the PCM, the maximum battery temperature increased slowly. Additionally, due to the excellent heat transfer capability of the OHP, the PCM/OHP BTMS delayed the time when the maximum battery temperature exceeded 50 ℃ by 810 s compared to the PCM/copper fin BTMS, resulting in the maximum battery temperature that was 41.29 ℃ lower at 3600 s. Furthermore, in the section where the latent heat of the PCM had the greatest impact, the slope of the battery temperature difference was 0.0017 lower than that of the PCM/copper fin BTMS. Therefore, the PCM/OHP BTMS demonstrates its potential as a viable hybrid BTMS.

Study on security log visualization and security threat detection using RGB Palette (RGB Palette를 이용한 보안 로그 시각화 및 보안 위협 인식)

  • Lee, Dong-Gun;Kim, Huy Kang;Kim, Eunjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.61-73
    • /
    • 2015
  • In order to respond quickly to security threats that are increasing fast and variously, security control personnel needs to understand the threat of a massive amount of logs generated from security devices such as firewalls and IDS. However, due to the limitations of the information processing capability of humans, it takes a lot of time to analyze the vast amount of security logs. As a result, there is problem that the detection and response of security threats are delayed. Visualization technique is an effective way to solve this problem. This paper visualizes the security log using the RGB Palette, offering a quick and effective way to know whether the security threat is occurred. And it was applied empirically in VAST Challenge 2012 dataset.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Dual-line Sensors (듀얼센서 기반 X-선 검색영상 스테레오 가시화 연구)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2083-2090
    • /
    • 2010
  • This paper presents a 3-D visualization technique using stereo radioactive images to provide efficient inspection of fast moving cargo objects. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment. Stereo radioactive images are acquired from a specially designed equipment which consists of a X-ray source, linear radioactive sensors, and a moving stage. Two radioactive sensors are installed so that rectified stereo X-ray images of objects are acquired. Using the stereo X-ray images, we run a matching algorithm to find the correspondences between the images and reconstruct 3-D shapes of real objects. The objects are put in a parallelepiped box to simulate cargo inspection. Three real objects are tested and reconstructed. Due to the inherent ambiguity in the stereo X-ray images, we reconstruct 3-D shapes of the edges of the objects. The experimental results show the proposed technique can provide efficient visualization for cargo inspection.