• Title/Summary/Keyword: Fast Transfer

Search Result 593, Processing Time 0.027 seconds

A Simulation-Based Study of FAST TCP Compared to SCTP: Towards Multihoming Implementation Using FAST TCP

  • Arshad, Mohammad Junaid;Saleem, Mohammad
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.275-284
    • /
    • 2010
  • The current multihome-aware protocols (like stream control transmission protocol (SCTP) or parallel TCP for concurrent multipath data transfer (CMT) are not designed for high-capacity and large-latency networks; they often have performance problems transferring large data files over shared long-distance wide area networks. It has been shown that SCTP-CMT is more sensitive to receive buffer (rbuf) constraints, and this rbuf-blocking problem causes considerable throughput loss when multiple paths are used simultaneously. In this research paper, we demonstrate the weakness of SCTP-CMT rbuf constraints, and we then identify that rbuf-blocking problem in SCTP multihoming is mostly due to its loss-based nature for detecting network congestion. We present a simulation-based performance comparison of FAST TCP versus SCTP in high-speed networks for solving a number of throughput issues. This work proposes an end-to-end transport layer protocol (i.e., FAST TCP multihoming as a reliable, delaybased, multihome-aware, and selective ACK-based transport protocol), which can transfer data between a multihomed source and destination hosts through multiple paths simultaneously. Through extensive ns-2 simulations, we show that FAST TCP multihoming achieves the desired goals under a variety of network conditions. The experimental results and survey presented in this research also provide an insight on design decisions for the future high-speed multihomed transport layer protocols.

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

Generalized Asymmetrical Bidirectional Associative Memory for Human Skill Transfer

  • T.D. Eom;Lee, J. J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.482-482
    • /
    • 2000
  • The essential requirements of neural network for human skill transfer are fast convergence, high storage capacity, and strong noise immunity. Bidirectional associative memory(BAM) suffering from low storage capacity and abundance of spurious memories is rarely used for skill transfer application though it has fast and wide association characteristics for visual data. This paper suggests generalization of classical BAM structure and new learning algorithm which uses supervised learning to guarantee perfect recall starting with correlation matrix. The generalization is validated to accelerate convergence speed, to increase storage capacity, to lessen spurious memories, to enhance noise immunity, and to enable multiple association using simulation work.

  • PDF

A Fast Route Selection Mechanism Considering Channel Statuses in Wireless Sensor Networks (무선 센서 네트워크에서 채널 상태를 고려하여 빠른 경로를 선택하는 기법)

  • Choi, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.45-51
    • /
    • 2009
  • We have presented a routing mechanism that selects a route by considering channel statuses in order to fast transfer delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is the shortest or the number of hops is the smallest. An algorithm to select a real-time transfer path based on link error rates according to the characteristic of wireless medium was also suggested. However, the propagation delay and retransmission timeout affected by link error rates are shorter than channel assessment time and backoff time. Therefore, the mechanism proposed in this paper estimated the time spent in using a clear channel and sending out a packet, which is based on channel backoff rates. A source node comes to select a route with the shortest end-to-end delay as a fast transfer path for real-time traffic, and sends data along the path chosen. We found that this proposed mechanism improves the speed of event-to-sink data transfer by performing experiments under different link error and channel backoff rates.

Conceptual design of a copper-bonded steam generator for SFR and the development of its thermal-hydraulic analyzing code

  • Im, Sunghyuk;Jung, Yohan;Hong, Jonggan;Choi, Sun Rock
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2262-2275
    • /
    • 2022
  • The Korea Atomic Energy Research Institute (KAERI) studied the sodium-water reaction (SWR) minimized steam generator for the safety of the sodium-cooled fast reactor (SFR), and selected the copper bonded steam generator (CBSG) as the optimal concept. This paper introduces the conceptual design of the CBSG and the development of the CBSG sizing analyzer (CBSGSA). The CBSG consists of multiple heat transfer modules with a crossflow heat transfer configuration where sodium flows horizontally and water flows vertically. The heat transfer modules are stacked along a vertical direction to achieve the targeted large heat transfer capacity. The CBSGSA code was developed for the thermal-hydraulic analysis of the CBSG in a multi-pass crossflow heat transfer configuration. Finally, we conducted a preliminary sizing and rating analysis of the CBSG for the trans-uranium (TRU) core system using the CBSGSA code proposed by KAERI.

A Theoretical Study on the Hydrogen Temperature Evolution Inside the Tank under Fast Filling Process (급속 충전에서 탱크 내부의 수소 온도 변화에 관한 이론 연구)

  • JI-CHAO LI;JI-QIANG LI;HENG XU;BYUNG CHUL CHOI;JEONG-TAE KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.608-614
    • /
    • 2023
  • The fast filling process of high-pressure hydrogen has an important impact on the filling efficiency and safety. In this paper, a specific study is carried out on the thermophysical phenomena during the fast filling process. Starting from the gas state equation of hydrogen, the change law of the hydrogen storage temperature is obtained, and then the temperature rise prediction is constructed. The model can clarify the relationship between the filling parameters and the temperature rise during the fast filling process, thereby revealing the flow and heat transfer laws of the fast charging process. To improve the theoretical research basis for the evaluation of vehicle-mounted hydrogen fast charging capacity, temperature prediction and optimization of hydrogenation methods.

Study of Dynamic Characteristics of Stacking and Transfer System for the Solid freeform fabrication System (임의형상가공시스템의 적층 및 이송장치 동특성연구)

  • 엄태준;주영철;민상현;김승우;공용해;천인국;방재철
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.246-248
    • /
    • 2002
  • This paper presents computer simulations of the stacking and transfer system for the fast freeform fabrication system. The stacking and transfer system is essential for the fast freeform fabrication system and its stable motion is very important fer the consistent stacking of the cut slices. The stacking and transfer system cane be modeled as a pneumatic system. The system consists of air compressor, the control valve, and the cylinder. The governing parameters have been changed and the simulation results are shown to predict the time response of the system. The results shows some parameters should be correctly tuned to obtain stable system response.

Numerical study on conjugate heat transfer in a liquid-metal-cooled pipe based on a four-equation turbulent heat transfer model

  • Xian-Wen Li;Xing-Kang Su;Long Gu;Xiang-Yang Wang;Da-Jun Fan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1802-1813
    • /
    • 2023
  • Conjugate heat transfer between liquid metal and solid is a common phenomenon in a liquid-metal-cooled fast reactor's fuel assembly and heat exchanger, dramatically affecting the reactor's safety and economy. Therefore, comprehensively studying the sophisticated conjugate heat transfer in a liquid-metal-cooled fast reactor is profound. However, it has been evidenced that the traditional Simple Gradient Diffusion Hypothesis (SGDH), assuming a constant turbulent Prandtl number (Prt,, usually 0.85 - 1.0), is inappropriate in the Computational Fluid Dynamics (CFD) simulations of liquid metal. In recent decades, numerous studies have been performed on the four-equation model, which is expected to improve the precision of liquid metal's CFD simulations but has not been introduced into the conjugate heat transfer calculation between liquid metal and solid. Consequently, a four-equation model, consisting of the Abe k - ε turbulence model and the Manservisi k𝜃 - ε𝜃 heat transfer model, is applied to study the conjugate heat transfer concerning liquid metal in the present work. To verify the numerical validity of the four-equation model used in the conjugate heat transfer simulations, we reproduce Johnson's experiments of the liquid lead-bismuth-cooled turbulent pipe flow using the four-equation model and the traditional SGDH model. The simulation results obtained with different models are compared with the available experimental data, revealing that the relative errors of the local Nusselt number and mean heat transfer coefficient obtained with the four-equation model are considerably reduced compared with the SGDH model. Then, the thermal-hydraulic characteristics of liquid metal turbulent pipe flow obtained with the four-equation model are analyzed. Moreover, the impact of the turbulence model used in the four-equation model on overall simulation performance is investigated. At last, the effectiveness of the four-equation model in the CFD simulations of liquid sodium conjugate heat transfer is assessed. This paper mainly proves that it is feasible to use the four-equation model in the study of liquid metal conjugate heat transfer and provides a reference for the research of conjugate heat transfer in a liquid-metal-cooled fast reactor.

A Study on The Available Transfer Capability(ATC) with Transient Stability Constraints (과도 안정도를 고려한 가용송전용량(ATC) 계산에 관한 연구)

  • Kim, Yang-Il;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.437-443
    • /
    • 2009
  • In recent years, electric power systems have been experiencing a rapid change due to the increasing electricity market. For the effective use of power system under the deregulated environment, it is important to make a fast and accurate calculation of the maximum available transfer capability (ATC) from a supply point to a demand point. In this paper, the purpose of this research is to calculate ATC fast and accurately for securing the stability of system and raising the efficiency as a result of anticipating transmission congestion according to transmission open access progressed in the future under the regulated environment of electricity market. In this paper, a study utilized a relation of the potential energy and energy function by which calculated CCT and then utilized a relation of PEBS for transient stability ATC calculation. In this paper, ATC was calculated as RPF and Energy Function method and calculation results of each method was compared. Contingence ranking method decided the weak bus by the Eigenvalues of Jacobian matrix and overloading branches by PI-index. As a result, a study proved the fast and accurate ATC calculation method considering transient stability suggested in this paper. Through the case study using New England 39 bus system, it is confirmed that the proposed method can be used for real time operation and the planning of electric market.

An Experimental Study on Unsteady Heat Transfer of Spray-Impinging Plate in a Pressurized Chamber (가압 분무실내 스프레이 충돌판에서 나타나는 비정상 열전달 측정에 관한 연구)

  • Cho, Chang-Kwun;Lee, Yeol;Koo, Ja-Ye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.60-67
    • /
    • 2000
  • An experimental investigation on transient heat transfer phenomena of impinging diesel-spray on a flat plate in a pressurized chamber is carried out. A diesel spray is injected from a single-hole nozzle and impinges to a heated flat plate in the chamber. A fast-response thermocouple installed in the top surface of the plate measures the transient variation of surface temperature of the plate under various conditions of the chamber pressures. Utilizing the semi-infinite model, the temporal variation of the heat flux on the plate is determined. Effects of various parameters, such as vertical distances between the nozzle and the plate, radial distances from the injection-axis, and the chamber pressures, on the heat flux characteristics of impinging diesel-spray are studied.