• Title/Summary/Keyword: Fast Switching Circuit

Search Result 103, Processing Time 0.028 seconds

High Power Circuit Analysis with the Simulation Technique using Physical Models of Power Devices (물리적인 전력소자 모텔을 이용한 대용량 인버터 시뮬레이션 기술)

  • Yoon Jae Hak;Schroder D.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.330-333
    • /
    • 2002
  • The design of high power electronic circuits and the verification of the design by practical experiments are time and cost consuming. Recently power circuit simulation technique is developing to do it easily. However, most of the simulation has used the ideal switch model consists of passive component that can not describe the physical characteristics of semiconductor devices and cannot describe the switching transient state. For the design of such power electronic circuits by the simulation, the switching transients are very important. Therefore the simulation models must describe the switching transient and the stationary behavior as precisely as possible on the hand and as fast as possible the other hand. This paper introduces the application of the physical models of power devices that are developed by TUM(Technical University of Munich, Germany) for the power electronic circuit analysis.

  • PDF

A Novel Fault Detection Method using the PWM Characteristic at Open-Circuit Fault in NPC Inverter Systems (NPC 인버터 시스템에서 개방성 고장시 PWM 특성을 이용한 새로운 고장 검출 방법)

  • Lee, Jung-Dae;Kim, Tae-Jin;Ha, Dong-Hyun;Hyun, Dong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1200-1207
    • /
    • 2008
  • In this paper, a novel fault detection method is proposed when the neutral-point-clamped inverter has a open-circuit fault in the switching device. This proposed method is configured with simple circuit and is achieved by a simple algorithm using the inherent characteristic of the continuous Pulse Width Modulation. Also, this method has the fast fault detection ability and is much simpler to embody, in comparison with conventional fault detection methods. This ability to detect fault minimizes harmful effect which are such as DC-link voltage unbalance and overstress to other switching devices. Therefore, this proposed fault detection method can improve reliability of NPC inverter system. Experimental results are presented to verify the validity of proposed fault detection method.

Design and Control of the Half-Bridge Type Switching Regulator (반브리지형 스위칭 전원의 설계 및 제어)

  • 고영길;이광원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.2
    • /
    • pp.76-82
    • /
    • 1984
  • This paper presents the design and the optimal control method of current-fed half-brige switching regulator. To achieve fast response load current variation is fed to control input, and simple optimal control model has been derived with provision of current control loop in the control circuit. Test results show that the control system model is correct and 5ms response time has been obtained at 25 KHz switching frequency.

  • PDF

Fabrication and Small scale Short Circuit Tests of Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch (이종초전도 코일을 이용한 하이브리드형 한류기의 제작 및 단락실험)

  • Jang, Jae-Young;Kim, Young-Jae;Na, Jin-Bae;Choi, Suk-Jin;Lee, Woo-Seung;Lee, Chang-Young;Park, Dong-Keun;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.41-45
    • /
    • 2011
  • Hybrid fault current limiters (FCL) have been researched at Yonsei University. The hybrid FCL has advantages such as having a rapid response to a sudden fault situation and a fast recovery time from a quench. It consists of an asymmetric HTS coil, a switching module, and a bypass reactor. The asymmetric HTS coil is wound with two different types of HTS wires in an opposite direction so that it has nearly zero inductance at the superconducting state. When the quench occurs at the fault state, a strong magnetic field is generated from the asymmetric coil because of different quench characteristics of two HTS wires, and then a repulsive force is induced in the switching module. The force opens the switch and the fault current is pushed into the bypass reactor. In this research, we analyzed the cause of the repulsive force and confirmed, experimentally and computationally, that the magnitude of a repulsive force is varied by changing the gap distance between the asymmetric coil and the switching module. By using the FEM simulation, we calculated the repulsive force with respect to the gap distance and verified that the effect of the gap distance. Then, short circuit test was carried out to confirm the correct operation of the fast switch.

Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method (플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발)

  • Shin, Choon-Shik;An, Young-Joo;Kim, Dong-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

A Study on the Output Ripple Characteristics of Switching Power Supply with the MCP(Multi-layer Conductive Polymer) Capacitor (MCP 커패시터의 스위칭 전원장치 출력리플 특성에 관한 연구)

  • Ga, Dong-Hoon;Gil, Young-Man;Ahn, Tae-Young;Heo, Seok;Lee, Young-hoon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.592-593
    • /
    • 2012
  • Buck converter must operate at fairly high switching frequency for miniaturizing a whole circuit and achieving a fast response. However, at the conditions of low output voltage, high output current, and high switching frequency, the influence of parasitic elements to circuit operation will become extremely obvious. In this paper, it has been shown that these parasitic elements of output capacitor link the ripple of the output voltage. The MCP capacitors and aluminum electrolytic capacitors are applied to the buck converter and observed characteristics and the experimental results were reported.

  • PDF

Power Loss Analysis of Interleaved Soft Switching Boost Converter for Single-Phase PV-PCS

  • Kim, Jae-Hyung;Jung, Yong-Chae;Lee, Su-Won;Lee, Tae-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2010
  • In this paper, an interleaved soft switching boost converter for a Photovoltaic Power Conditioning System (PV-PCS) with high efficiency is proposed. In order to raise the efficiency of the proposed converter, a 2-phase interleaved boost converter integrated with soft switching cells is used. All of the switching devices in the proposed converter achieve zero current switching (ZCS) or zero voltage switching (ZVS). Thus, the proposed circuit has a high efficiency characteristic due to low switching losses. To analyze the power losses of the proposed converter, two experimental sets have been built. One consists of normal devices (MOSFETs, Fast Recovery (FR) diodes) and the other consists of advanced power devices (CoolMOSs, SiC-Schottky Barrier Diodes (SBDs)). To verify the validity of the proposed topology, theoretical analysis and experimental results are presented.

Development of the Hybrid Fault Current Limiter (복합형 한류기 개발)

  • Park, K.B.;Lee, G.H.;Bang, S.H.;Choi, W.J.;Sim, J.W.;Sin, Y.S.;Kim, Y.G.;Hyun, O.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.125-125
    • /
    • 2010
  • The Hybrid Fault current limit combined the semiconductor switching components, for example IGBT, with mechanical fast switch reduced mechanical and thermal stress on electrical machines, for example circuit breaker, transformer, and so on, in the electric network. We had focused on reducing the voltage stress of the semiconductor switching components by the mechanical fast switch. As a result, we could dramatically reduce amount of semiconductor switching components only using parallel arrangement of them, not series.

  • PDF

Development of Nonlinear Inverter Model for Fast Dynamic Analysis of Electric Power Steering with PMSM Drive System (자동차 전자식 조향장치용 PMSM 구동 시스템의 신속한 동적해석을 위한 비선형 인버터 모델 개발)

  • Choi, Chin-Chul;Lee, Woo-Tiak;Hong, Jeong-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1132-1133
    • /
    • 2007
  • A circuit-domain model of PWM inverter provides accurate simulation results in consideration of detail switching characteristics. Although, a huge amount of computation time is demanded for the simulation results of several ten seconds, which is the required time to analyze system behaviors or control performances of Electric Power Steering(EPS) on real drive condition. This paper describes the nonlinear inverter model for fast dynamic simulation of EPS without the PWM concept through analyzing the effect of nonlinear switching characteristics like dead time, forward voltage drop and conduction resistance. Some inverter models including proposed model are compared from two standpoints which are computation time and accuracy. The comparison results show the usefulness of the developed model in order to develop the control algorithm through the fast prediction of system behaviors.

  • PDF

Fast Context Switching Architecture in Embedded Systems (빠른 문맥전환을 위한 임베디드 시스템 구조)

  • Son, Jeongho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2010
  • In real-time embedded systems, the responsibility is the most important thing because it is related to human life. Context switching is a part of which can slow down the responsibility. We therefore should minimize the amount of state that needs to be saved during context switching. In this paper, we introduce a new architecture (Register Farm) for context switching which can exchange two contexts in one cycle time. Although it might increase the cost of MCU design and the complexity of circuit, it cannot miss any interrupt during context switching. Consequently, Register Farm architecture can make embedded systems spread out in human life because it can increase reliability and responsibility in real time embedded systems.