• Title/Summary/Keyword: Fast Storage Device

Search Result 76, Processing Time 0.023 seconds

A Novel Frequency Tracker for Islanded-Mode Operation in Microgrid (마이크로그리드 독립운전모드를 위한 주파수 추종에 관한 연구)

  • Jeon, Jin-Hong;Kim, Kyoung-Hoon;Hwang, Chul-Sang;Kim, Jang-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1331-1338
    • /
    • 2011
  • This paper proposes a method for frequency control of islanded microgrid with battery energy storage system. For frequency control of islanded microgrid, battery energy storage system uses a phase locked loop algorithm with positive sequence components for a fast frequency estimation. Microgrid is a power system with small inertia because it has small capacity generators and inverter systems for renewable energy. So, Islanded microgrid's frequency varies fast and large as small generation and load changes. To reduce frequency variation of islanded microgrid, it needs a device with fast frequency response. For fast frequency response, a fast frequency tracking is important. To show the validation of proposed fast frequency tracking algorithm, battery energy storage system with proposed algorithm is tested in microgrid pilot plant.

Experimental Evaluation of an Energy Storage Device with High Rotaional Speed (에너지 저장용 고속회전기의 실험적 평가)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.193-196
    • /
    • 2014
  • Experimantal evaluation of an energy storage device with high rotational speed to store regenerative energy which might be generated during the braking period of the trains is presented. The proposed ESS is small scale model and has 5kW output power, high rotational speed. In general railway trains generate regenerative energy for 10-20 sec when the train brakes and also high traction energy is needed for very short moment (10 sec) when the train increases the traction force. Considering such characteristics of the railway system energy storage device for the railway should have very fast response property. Among the various energy storage devices flywheel energy storage system has the fastest response property, which means that flywheel ESS is the most suitable for the railway system.

  • PDF

A Simple Fast Analog Storage Device and Its Applications (간단한 Analog 기억장치의 제작과 그 응용)

  • In Tae Bae;Q. Won Choi;Ha Suck Kim
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 1981
  • An inexpensive, yet convenient analog storage device was constructed. Sequentially MOSFET-switched 20 sample and holds equipped with a high input impedance preamplifier were parallelly matched to the digitally controlled shift register system in variable speeds up to 3 kHz. To verify its usefulness, square wave train, sinusiodal wave and some electrochemical data, such as fast-scan voltammogram and transient current-time curves of differential pulse polarography were tested.

  • PDF

Optimizing I/O Stack for Fast Storage Devices (고속 저장 장치를 위한 입출력 스택 최적화)

  • Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.5
    • /
    • pp.251-258
    • /
    • 2016
  • Recently, the demand for fast storage devices is rapidly increasing in cloud platforms, social network services, etc. Despite the development of fast storage devices, the traditional Linux I/O stack is not able to exploit the full extent of the performance improvement since it has been optimized for disk-based storage devices. In this paper, we propose an optimized I/O stack which can fully utilize the I/O bandwidth and latency of fast storage devices. To this end, we design a new I/O interface to replace the current block I/O interface and optimize our I/O interface. Our optimized I/O interface bypasses operations/layers in block I/O subsystems of the current Linux I/O stack to fully exploit fast storage devices. We also optimize the Linux file systems such as ext2 and ext4 to run on our I/O interface. We evaluate our I/O stack with multiple benchmarks and the experimental results show that our I/O stack achieves 1.7 times better throughput compared to traditional Linux I/O stack.

A SAN Optimization Scheme for High-Performance Storage System (고성능 저장장치를 위한 SAN최적화기법)

  • Lee, In-Seon
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.379-388
    • /
    • 2014
  • We noted that substituting hard disk with high-performance storage device on SAN did not immediately result in getting high performance. Investigating the reason behind this leaded us to propose optimization schemes for high-performance storage system. We first got rid of the latency in the I/O process which is unsuitable for the high-performance storage device, added parallelism on the storage server, and applied temporal merge to Superhigh speed network protocol for improving the performance with small random I/O. The proposed scheme was implemented on the SAN with high-performance storage device and we verified that there were about 30% reduction on the I/O delay latency and 200% improvement on the storage bandwidth.

Refractive media flatness measurement by phase shifting digital holography (위상천이 디지털 홀로그래피를 이용한 평판의 표면 평면도 측정)

  • Jeon, Sung-Bin;Kim, Do-Hyung;Cho, Jang-Hyun;Park, No-Cheol;Yang, Hyun-Seok;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 2012
  • We measured the surface flatness of both sides for refractive media using the transmitted digital holography method. To enhance the accuracy of the result, phase-shifting system was used. With two different phase modulation of reference beam, the phase profile of object can be easily obtained. Thus, we proposed the surface measurement method which can measure large area fast, compared with conventional methods. To guarantee the reliability of obtained result, we compared with Zygo measurement system. With the proposed method, the surface flatness of $3.45{\mu}m$ resolution could be obtained.

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Shape Sensitivity Analysis for the Optimal Design of Air Bearing Sliders of Optical Disk Drives (광디스크 드라이브 공기베어링 슬라이더의 최적설계를 위한 형상민감도 해석)

  • Kim, Hyun-Ki;Jang, Hyuk;Kim, Kwang-Sun;Lim, Kyong-Hwa;Jeong, Tae-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.742-747
    • /
    • 2000
  • The optical storage device has recently experienced significant improvements, especially for the aspects of high capacity and fast transfer rate. However, it is the fact that the optical storage device has the lower access time for the randomly scattered data compared to the hard disk drives. It is, therefore, necessary to develop a new type of optical storage system. In this study, we investigate the air bearing characteristics for the optical disk drives which have the swing arm actuator similarly to the hard disk drives. Considering the requirements of the optical disk drives, we parametrize the shape of the air bearing surface and investigate its sensitivity to the flying characteristics for further optimized design outputs.

  • PDF

Superconducting Magnetic Energy Storage (SMES) Control Models for the Improvement of Power System Stability (계통안정도 개선을 위한 SMES 제어모델에 관한 연구)

  • Ham, Wan-Kyun;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.501-503
    • /
    • 2005
  • Superconducting Magnetic Energy Storage (SMES) can inject or absorb real and reactive power to or from a power system at a very fast rate on a repetitive basis. These characteristics make the application of SMES ideal for transmission grid control and stability enhancement. The purpose of this paper is to introduce the SMES model and scheme to control the active and reactive power through the power electronic device.

  • PDF

A Design and Implementation for a Reliable Data Storage in a Digital Tachograph (디지털 자동차운행기록계에서 안정적인 데이터 저장을 위한 설계 및 구현)

  • Baek, Sung Hoon;Son, Myunghee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • The digital tachograph is a device that automatically records speed and distance of a vehicle, together with the driver's activity and vehicle status at an accident. It records vehicle speed, break status, acceleration, engine RPM, longitude and latitude of GPS, accumulated distance, and so on. European Commission regulation made digital tachographs mandatory for all trucks from 2005. Republic of Korea made digital tachographs mandatory for all new business vehicles from 2011 and is widening the range of vehicles that must install digital tachographs year by year. This device is used to analyze driver's daily driving information and car accidents. Under a car accident that makes the device reliability unpredictable, it is very important to store driving information with maximum reliability for its original mission. We designed and implemented a practical digital tachograph. This paper presents a storage scheme that consists of a first storage device with small capacity at a high reliability and a second storage device with large capacity at a low cost in order to reliably records data with a hardware at a low cost. The first storage device records data in a SLC NAND flash memory in a log-structured style. We present a reverse partial scan that overcomes the slow scan time of log-structured storages at the boot stage. The scheme reduced the scan time of the first storage device by 1/50. In addition, our design includes a scheme that fast stores data at a moment of accident by 1/20 of data transfer time of a normal method.