• Title/Summary/Keyword: Fast Processing

Search Result 2,223, Processing Time 0.049 seconds

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

fast running FIR filter structure based on Wavelet adaptive algorithm for computational complexity (웨이블렛 기반 적응 알고리즘의 계산량 감소에 적합한 Fast running FIR filter에 관한 연구)

  • Lee, Jae-Kyun;Lee, Chae-Wook
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.250-255
    • /
    • 2005
  • In this paper, we propose a new fast running FIR filter structure that improves the convergence speed of adaptive signal processing and reduces the computational complexity. The proposed filter is applied to wavelet based adaptive algorithm. Actually we compared the performance of the proposed algorithm with other algorithm using computer simulation of adaptive noise canceler based on synthesis speech. As the result, the frequency domain algorithm is prefer than the existent time domain. we analyzed the Wavelet algorithm, short-length fast running FIR algorithm, fast-short-length fast running FIR algorithm and proposed algorithm.

  • PDF

DEVELOPMENT OF HIGH-RESOLUTION SATELLITE IMAGE PROCESSING SYSTEM BY USING CBD

  • Yoon, Chang-Pak;Seo, Ji-Hoon;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.49-52
    • /
    • 2002
  • High-resolution satellite image processing software should be able to ensure accurate, fast, compact data processing in offline or online environment. In this paper, component software for high-resolution satellite image processing is developed using OpenGIS components and real-time data processing architecture. The developed component software is composed of three major packages, which are data provide package, user interface package, and fast data processing package. The data provider package encodes and decodes diverse image/vector data formats and give identical data access methods to developers. The user interface package supports menus, toolbars, dialogs, and events to use easier. The fast data processing package follows the OpenGIS's data processing standards, which can deal with several processors as components with standard procedural functionalities.

  • PDF

High-Speed Active Vibration Control System of Plate using TMS320C6713DSK (TMS320C6713DSK를 적용한 평판의 고속 능동 진동제어)

  • Choi, Hyeung-Sik;Her, Jae-Gwan;Seo, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.918-924
    • /
    • 2009
  • This paper deals with the experimental assessment of the vibration suppression of the smart structures. First, we have presented the paper about the new high-speed active control system that we have developed using the DSP320C6713 microprocessor and a peripheral system composed of a data acquisition system, A/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers using PA95. Since fast data processing is very important in the active vibration control of the structures, we utilized the fast processing DSP320C6713 microprocessor as a main processor to the controller and fast peripheral devices for fast control loop. To realize a fast active vibration control, we have analyzed and tested the processing time of the peripheral devices and provided the corresponding test results. Especially, we have focused on achieving the fast signal amplification of the PA95 device since it takes most of loop times of the control system. Finally, we performed numerous experiments of active vibration control of the aluminum plate to validate the superior performance of the developed control system based on previous mode tests of the plate.

Fast Hough Transform Using Multi-statistical Methods (다중 통계기법을 이용한 고속 하프변환)

  • Cho, Bo-Ho;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1747-1758
    • /
    • 2016
  • In this paper, we propose a new fast Hough transform to improve the processing time and line detection of Hough transform that is widely used in various vision systems. First, for the fast processing time, we reduce the number of features by using multi-statistical methods and also reduce the dimension of angle through six separate directions. Next, for improving the line detection, we effectively detect the lines of various directions by designing the line detection method which detects line in proportion to the number of features in six separate directions. The proposed method was evaluated with previous methods and obtained the excellent results. The processing time was improved in about 20% to 50% and line detection was performed better in various directions than conventional methods with experimental images.

Two-Tier Storage DBMS for High-Performance Query Processing

  • Eo, Sang-Hun;Li, Yan;Kim, Ho-Seok;Bae, Hae-Young
    • Journal of Information Processing Systems
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper describes the design and implementation of a two-tier DBMS for handling massive data and providing faster response time. In the present day, the main requirements of DBMS are figured out using two aspects. The first is handling large amounts of data. And the second is providing fast response time. But in fact, Traditional DBMS cannot fulfill both the requirements. The disk-oriented DBMS can handle massive data but the response time is relatively slower than the memory-resident DBMS. On the other hand, the memory-resident DBMS can provide fast response time but they have original restrictions of database size. In this paper, to meet the requirements of handling large volumes of data and providing fast response time, a two-tier DBMS is proposed. The cold-data which does not require fast response times are managed by disk storage manager, and the hot-data which require fast response time among the large volumes of data are handled by memory storage manager as snapshots. As a result, the proposed system performs significantly better than disk-oriented DBMS with an added advantage to manage massive data at the same time.

The GPU-based Parallel Processing Algorithm for Fast Inspection of Semiconductor Wafers (반도체 웨이퍼 고속 검사를 위한 GPU 기반 병렬처리 알고리즘)

  • Park, Youngdae;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1072-1080
    • /
    • 2013
  • In a the present day, many vision inspection techniques are used in productive industrial areas. In particular, in the semiconductor industry the vision inspection system for wafers is a very important system. Also, inspection techniques for semiconductor wafer production are required to ensure high precision and fast inspection. In order to achieve these objectives, parallel processing of the inspection algorithm is essentially needed. In this paper, we propose the GPU (Graphical Processing Unit)-based parallel processing algorithm for the fast inspection of semiconductor wafers. The proposed algorithm is implemented on GPU boards made by NVIDIA Company. The defect detection performance of the proposed algorithm implemented on the GPU is the same as if by a single CPU, but the execution time of the proposed method is about 210 times faster than the one with a single CPU.

A Fast Converging Pulse Coupling Oscillator Synchronicity Model

  • Yu, Niu;d'Auriol, Brian J.;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.860-861
    • /
    • 2007
  • The Pulse Coupling Oscillator (PCO) is a synchronicity model inspired by nature. However, the PCO model has some limitations. The Fast PCO model is proposed in this paper. It addresses the problem of the phase swing actions in the original PCO model. Benefits are the fast synchronicity speed and associated energy saving.

  • PDF