• Title/Summary/Keyword: Fast MIPv6

Search Result 68, Processing Time 0.031 seconds

A Study for Implementation of HMIPv6 in all-IP WDM-PON (All-IP WDM-PON 액세스 네트워크에서 HMIP 실현 연구)

  • Lee, Sung-Keun;Lim, Tae-Hyong;Seo, Kyung-Rin;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5B
    • /
    • pp.243-252
    • /
    • 2008
  • In this paper, we propose the next-generation broadband wireless access network architecture, which is based on the wavelength division multiplexing-passive optical network(WDM-PON), and efficient mobility management scheme to support quality-of-service(QoS) of multimedia services in the next-generation wireless network. By adapting WDM-PON technology to wireless access network, the proposed scheme can realize broadband wireless access network. In addition, We utilize newly proposed local channels between optical network units(ONUs) or subnets in order to support the fast and efficient local data and handoff data transmission. We evaluate the performance of the proposed scheme in terms of handoff delay and packet loss thru computer simulation. Thru various computer simulation results, we verified the superior performance of the proposed scheme by comparing with the results of other schemes.

Enhanced Mobility Management Framework for Future Generation Networks (차세대 이동통신 네트워크를 위한 향상된 이동성 관리 프레임워크)

  • Kim, Moon;Moon, Tae-Wook;Cho, Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7B
    • /
    • pp.710-720
    • /
    • 2009
  • The Future Generation Networks(FGNs) are proposed to integrate various heterogeneous access technologies, and further expected to support both vertical and seamless handovers. In this motivation, the IEEE 802.21 specifies Media Independent Handover(Mlli) services to enhance the mobile user experience by optimizing handovers between heterogeneous access networks. Additionally, Fast handover for MIPv6(FM1Pv6) is introduced to provide transparent host mobility and to improve handover performance by reducing handover delay as well. This paper focuses on the coordination of FMIPv6 and MIH, and introduces an enhanced mobility management framework suited for FGN. This novel framework replaces handover signaling messages used in wireless networks with novel MIH messages and local primitives. Moreover, Serving Access Router(SAR) performs most of handover processes instead of Mobile Node(MN). Therefore, the proposed mobility management framework reduces handover latency, packet loss, and signaling overhead significantly. We further evaluate the performance of the proposed framework by using both numerical analysis and network simulations.

Wireless Security Transmission Using Algorithm of Multiple-Key Exchange (다중 키 교환 알고리즘을 이용한 무선 보안 전송 기법)

  • Ryu, Dong-Ju;Kim, Gwang-Hyun;Noh, Bong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.807-810
    • /
    • 2005
  • Constructed network test environment of wireless base for confidentiality guarantee of data and safe transmission that is transmited at Mobile node of Wireless Network environment in this paper. And, progressed research about IKEv2's Multiple-Key Exchange mechanism for efficient security transmission that use IPSec that is built-in to basis to IPv6 of Mobile environment. Have several key to single terminal to solve that is seam at hand off packet transmission process of Mobile Node in Wireless Network and Re-setting for Key and Re-exchange problem that happen frequently and studied technology that move. Key exchange protocol that is used for an experiment loads basically in MIPv6 and used IKEv2 protocol that is used for management and distribution of reliable encryption key between both end. Using network simulator of SSFNet(Scalable Simulation Framework Network Models) in this paper Key exchange delay value of IKEv2's security transmission analyzing comparison Performance measure and studied about problem and improvement way accordingly.

  • PDF

Multi-layered Mobility Management for Heterogeneous Traffics Using the Combination of SIP and FMIPv6 (SIP와 FMIPv6를 이용한 이종 트래픽의 다계층 이동성 관리 기법)

  • Jung, Hyun-Duk;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1051-1058
    • /
    • 2010
  • Mobile IP (MIP) and SIP are considered as important technologies to provide the macro mobility in the next generation mobile convergence networks which have heterogeneous access networks. Typically, MIP and SIP are more suitable for the non-real-time TCP connections and the real-time RTP/UDP sessions respectively, hence a handset which uses both of these sessions should simultaneously apply MIP and SIP to perform the efficient mobility management. Existing multi-layered mobility management schemes focus on the signalling order of each protocol. However, simple combining of two protocols cannot provide the performance enhancement of the mobility management. In this paper, a novel multi-layered mobility management algorithm using the combination of SIP and fast MIPv6 (FMIPv6) is proposed. FMIPv6 and SIP mobility is simultaneously performed to reduce the service interrupt time and to guarantee QoS requirement. The delay model is defined to analysis the performance of the algorithm and the simulation results show the performance of the proposed algorithm.

Secure-FMIPv6: A Study on Secure Fast Handover based on ID-based Cryptosystem (Secure-FMIPv6: ID 기반 암호시스템에 기반한 안전한 Fast 핸드오버 연구)

  • Lee Woo-Chan;Jung Soo-Jin;Lee Jong-Hyouk;Han Young-Ju;Chung Tai-Myoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.905-908
    • /
    • 2006
  • MIPv6 는 MN(Mobile Node)가 자신의 홈 네트워크를 벗어나 외부 네트워크로 이동하여도 다른 노드들과 끊김 없이 지속적인 통신을 할 수 있게 해주는 인터넷 프로토콜이다. MN 은 외부네트워크로 이동 후 HA(Home Agent) 및 CN(Correspondent Node)로 핸드오버(Handover) 동작의 수행하며 이로 인한 지연이 발생하게 된다. 이러한 지연을 줄이기 위한 대책으로 Fast 핸드오버가 등장하였다. Fast 핸드오버 과정에서 MN 은 이동하려는 서브넷의 라우터(New Access Router: NAR)로의 전환을 위하여 현재 연결된 AR 과 미리 정보를 주고 받게 되고, 이동이 발생한 후에 NAR 과의 핸드오버 지연시간이 감소하게 된다. 반면 공격자가 flooding 을 통해 MN 에게 DoS(Denial of Service) 공격을 가하여 MN 을 다운시킨 후, MN 으로 위장하여 데이터를 가로채는 취약점이 존재한다. 본 논문에서는 위의 취약점을 보완하기 위하여 핸드오버 과정에서 주고받는 메세지에 대한 기밀성 및 노드 인증을 제공하는 ID 기반 암호시스템에 기반한 안전한 Fast 핸드오버 방식을 제안한다. 제안하는 모델은 메시지의 암호화와 노드 인증을 통해 무결성 및 기밀성을 보장하고 Traditional PKI 시스템에 비해 공개키 인증시간을 단축하는 이점을 가질 것으로 기대된다.

  • PDF

Authentication eXtention Scheme of Fast Handover for Secure NEMO-based PMIPv6 Networks (안전한 NEMO 기반 PMIPv6 네트워크를 위한 빠른 핸드오버를 지원하는 확장 인증기법)

  • Im, Illkyun;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.107-119
    • /
    • 2013
  • This paper reinforced security under the network evaluation of wire wireless integration of NEMO (NEwork MObility) supporting mobility and network-based PMIPv6 (Proxy Mobile IPv6). It also proposes $SK-L^2AS$ (Symmetric Key-Based Local-Lighted Authentication Scheme) based on simple key which reduces code calculation and authentication delay costs. Moreover, fast handover technique was also adopted to reduce handover delay time in PMIPv6 and X-FPMIPv6 (eXtension of Fast Handover for PMIPv6) was used to support global mobility. In addition, AX-FPMIPv6 (Authentication eXtension of Fast Handover for PMIPv6) is proposed which integrated $SK-L^2AS$ and X-FPMIPv6 by applying Piggybacks method to reduce the overhead of authentication and signaling. The AX-FPMIPv6 technique suggested in this paper shows that this technique is better than the existing schemes in authentication and handover delay according to the performance analysis.

An Enhanced Network-based Mobility Management Protocol for Fast Mobility Support

  • Lee, Sung-Kuen;Lee, Kyoung-Hee;Lee, Hyun-Woo;Hong, Seng-Phil;Park, Jin-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1997-2015
    • /
    • 2011
  • In this paper, we propose the enhanced network-based mobility management protocol, called enhanced proxy mobile ipv6 (E-PMIPv6), which can provide mobile nodes (MNs) with a fast and efficient mobility service in PMIPv6 domain. The proposed scheme can provide a fast and efficient mobility service to MNs and also the strength of network scalability and stability to an access network by proposing the dynamic virtual hierarchical network architecture. In addition, the pre-authentication procedure for an MN, based on the information of neighbor mobile access gateway (MAG) list in the enhanced-policy server (E-PS), is proposed to support seamless handover by reducing MN's handover latency. Through performance evaluations of numerical analyses and simulations, we have confirmed and verified the superiority of the proposed scheme compared to the conventional proxy mobile ipv6 (PMIPv6).

Unproved Fast Handover Protocol using HMIPv6 based on IEEE 802.16e Network (IEEE 802.16e 기반에서의 Improved Fast Handover Protocol using HMIPV6)

  • Koo, Gyo-Du;Mun, Young-Song
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.503-508
    • /
    • 2007
  • Since the Wibro service realize mobile network on the public, it has been considered that it is not enough to support real time service at vehicular speed. The standard Fast Mobile IPv6 Handover Protocol using HMIPv6 may guarantee seamless service as long as the Mobile Node moves in the same domain MAP however it does not regard fast handover over inter-MAP domain. Thus Macro Mobility Handover in HMIPv6 was proposed to reduce handover latency in inter-MAP domain. But it is still not enough to support real-time service. So we propose an Improved FHMIPv6 over 802.16e network to reduce the overall handover latency. We embedded Layer 3 handover messages of the FHMIPv6 into the Layer 2 handover messages. So the MN is able to $^-nish$ overall handover procedure earlier in our scheme. The numerical results show the performance of IFHMIPv6 has improved about 32% in comparison with FHMIPv6.

The Fast and Secure Authentication Mechanism for Proxy Mobile IPv6 (고속의 안전한 Proxy Mobile IPv6 인증 메커니즘)

  • Park, Chang-Seop;Kang, Hyun-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2012
  • Without a proper protection mechanism for the signaling messages to be used for the mobility support in the Proxy Mobile IPv6 (PMIPv6), it is also vulnerable to several security attacks such as redirect attack, MITM (Man-In-The-Middle) attack, replay attack and DoS (Denial of Service) attack as in Mobile IPv6. In this paper, we point out some problems of previous authentication mechanisms associated with PMIPv6, and also propose a new fast and secure authentication mechanism applicable to PMIPv6. In addition, it is also shown that the proposed one is more efficient and secure than the previous ones.

State of Art on Security Protocols for Fast Mobile IPv6 (고속의 이동 IPv6를 위한 보안 프로토콜 연구)

  • You, Il-Sun;Hori, Yoshiaki;Sakurai, Kouichi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.3
    • /
    • pp.121-134
    • /
    • 2010
  • With the help of various Layer 2 triggers, Fast Handover for Mobile IPv6 (FMIPv6) considerably reduces the latency and the signaling messages incurred by the handover. Obviously, if not secured, the protocol is exposed to various security threats and attacks. In order to protect FMIPv6, several security protocols have been proposed. To our best knowledge, there is lack of analysis and comparison study on them though the security in FMIPv6 is recognized to be important. Motivated by this, we provide an overview of the security protocols for FMIPv6, followed by the comparison analysis on them. Also, the security threats and requirements are outlined before the protocols are explored. The comparison analysis result shows that the protocol presented by You, Sakurai and Hori is more secure than others while not resulting in high computation overhead. Finally, we introduce Proxy MIPv6 and its fast handover enhancements, then emphasizing the need for a proper security mechanism for them as a future work.